Fixed-target unpolarized Drell-Yan experiments often feature an acceptance
depending on the polar angle of the lepton tracks in the laboratory frame.
Typically leptons are detected in a defined angular range, with a dead zone in
the forward region. If the cutoffs imposed by the angular acceptance are
independent of the azimuth, at first sight they do not appear dangerous for a
measurement of the cos(2\phi)-asymmetry, relevant because of its association
with the violation of the Lam-Tung rule and with the Boer-Mulders function. On
the contrary, direct simulations show that up to 10 percent asymmetries are
produced by these cutoffs. These artificial asymmetries present qualitative
features that allow them to mimic the physical ones. They introduce some
model-dependence in the measurements of the cos(2\phi)-asymmetry, since a
precise reconstruction of the acceptance in the Collins-Soper frame requires a
Monte Carlo simulation, that in turn requires some detailed physical input to
generate event distributions. Although experiments in the eighties seem to have
been aware of this problem, the possibility of using the Boer-Mulders function
as an input parameter in the extraction of Transversity has much increased the
requirements of precision on this measurement. Our simulations show that the
safest approach to these measurements is a strong cutoff on the Collins-Soper
polar angle. This reduces statistics, but does not necessarily decrease the
precision in a measurement of the Boer-Mulders function.Comment: 13 pages, 14 figure