5 research outputs found

    Pharmacological, behavioural and mechanistic analysis of HIV-1 gp120 induced painful neuropathy

    Get PDF
    A painful neuropathy is frequently observed in people living with human immunodeficiency virus type 1 (HIV-1). The HIV coat protein, glycoprotein 120 (gp120), implicated in the pathogenesis of neurological disorders associated with HIV, is capable of initiating neurotoxic cascades via an interaction with the CXCR4 and/or CCR5 chemokine receptors, which may underlie the pathogenesis of HIV-associated peripheral neuropathic pain. In order to elucidate the mechanisms underlying HIV-induced painful peripheral neuropathy, we have characterised pathological events in the peripheral and central nervous system following application of HIV-1 gp120 to the rat sciatic nerve. Perineural HIV-1 gp120 treatment induced a persistent mechanical hypersensitivity (44% decrease from baseline), but no alterations in sensitivity to thermal or cold stimuli, and thigmotactic (anxiety-like) behaviour in the open field. The mechanical hypersensitivity was sensitive to systemic treatment with gabapentin, morphine and the cannabinoid WIN 55,212-2, but not with amitriptyline. Immunohistochemical studies reveal: decreased intraepidermal nerve fibre density, macrophage infiltration into the peripheral nerve at the site of perineural HIV-1 gp120; changes in sensory neuron phenotype including expression of activating transcription factor 3 (ATF3) in 27% of cells, caspase-3 in 25% of cells, neuropeptide Y (NPY) in 12% of cells and galanin in 13% of cells and a spinal gliosis. These novel findings suggest that this model is not only useful for the elucidation of mechanisms underlying HIV-1-related peripheral neuropathy but may prove useful for preclinical assessment of drugs for the treatment of HIV-1 related peripheral neuropathic pain

    Comparison of dorsal root ganglion gene expression in rat models of traumatic and HIV-associated neuropathic pain

    Get PDF
    To elucidate the mechanisms underlying peripheral neuropathic pain in the context of HIV infection and antiretroviral therapy, we measured gene expression in dorsal root ganglia (DRG) of rats subjected to systemic treatment with the anti-retroviral agent, ddC (Zalcitabine) and concomitant delivery of HIV-gp120 to the rat sciatic nerve. L4 and L5 DRGs were collected at day 14 (time of peak behavioural change) and changes in gene expression were measured using Affymetrix whole genome rat arrays. Conventional analysis of this data set and Gene Set Enrichment Analysis (GSEA) was performed to discover biological processes altered in this model. Transcripts associated with G protein coupled receptor signalling and cell adhesion were enriched in the treated animals, while ribosomal proteins and proteasome pathways were associated with gene down-regulation. To identify genes that are directly relevant to neuropathic mechanical hypersensitivity, as opposed to epiphenomena associated with other aspects of the response to a sciatic nerve lesion, we compared the gp120 + ddC-evoked gene expression with that observed in a model of traumatic neuropathic pain (L5 spinal nerve transection), where hypersensitivity to a static mechanical stimulus is also observed. We identified 39 genes/expressed sequence tags that are differentially expressed in the same direction in both models. Most of these have not previously been implicated in mechanical hypersensitivity and may represent novel targets for therapeutic intervention. As an external control, the RNA expression of three genes was examined by RT-PCR, while the protein levels of two were studied using western blot analysis

    The Baum–Connes and the Farrell–Jones Conjectures in K- and L-Theory

    No full text
    corecore