322 research outputs found
Can Momentum Correlations Proof Kinetic Equilibration in Heavy Ion Collisions at 160 AGeV?
We perform an event-by-event analysis of the transverse momentum distribution
of final state particles in central Pb(160AGeV)+Pb collisions within a
microscopic non-equilibrium transport model (UrQMD). Strong influence of
rescattering is found. The extracted momentum distributions show less
fluctuations in A+A collisions than in p+p reactions. This is in contrast to
simplified p+p extrapolations and random walk models.Comment: 9 pages, 3 eps figures, submitted to Phys. Lett.
Direct Emission of multiple strange baryons in ultrarelativistic heavy-ion collisions from the phase boundary
We discuss a model for the space-time evolution of ultrarelativistic
heavy-ion collisions which employs relativistic hydrodynamics within one region
of the forward light-cone, and microscopic transport theory (i.e. UrQMD) in the
complement. Our initial condition consists of a quark-gluon plasma which
expands hydrodynamically and hadronizes. After hadronization the solution
eventually changes from expansion in local equilibrium to free streaming, as
determined selfconsistently by the interaction rates between the hadrons and
the local expansion rate. We show that in such a scenario the inverse slopes of
the -spectra of multiple strange baryons (, ) are practically
unaffected by the purely hadronic stage of the reaction, while the flow of
's and 's increases. Moreover, we find that the rather ``soft''
transverse expansion at RHIC energies (due to a first-order phase transition)
is not washed out by strong rescattering in the hadronic stage. The earlier
kinetic freeze-out as compared to SPS-energies results in similar inverse
slopes (of the -spectra of the hadrons in the final state) at RHIC and SPS
energies.Comment: 4 pages, 3 figures, statistics for Omegas improved, slight revision
of the manuscript (expansion of hadronization volume more emphasized,
pi-Omega scattering is discussed very briefly
Signals of the QCD Critical Point in Hydrodynamic Evolutions
The presence of a critical point in the QCD phase diagram can deform the
trajectories describing the evolution of the expanding fireball in the QCD
phase diagram. The deformation of the hydrodynamic trajectories will change the
transverse velocity dependence of the proton-antiproton ratio when the fireball
passes in the vicinity of the critical point. An unusual transverse velocity
dependence of the anti-proton/proton ratio in a narrow beam energy window would
thus signal the presence of the critical point.Comment: 4 pages, 6 figures, 21st International Conference on
Ultra-Relativistic Nucleus-Nucleus Collisions (QM2009) 30 Mar - 4 Apr 2009,
Knoxville, Tennesse
The Origin of Transverse Flow at the SPS
We study the transverse expansion in central Pb+Pb collisions at the CERN
SPS. Strong collective motion of hadrons can be created. This flow is mainly
due to meson baryon rescattering. It allows to study the angular distribution
of intermediate mass meson baryon interactions.Comment: submitted to Phys. Lett.
Strangeness Enhancement in Heavy Ion Collisions - Evidence for Quark-Gluon-Matter ?
The centrality dependence of (multi-)strange hadron abundances is studied for
Pb(158 AGeV)Pb reactions and compared to p(158 GeV)Pb collisions. The
microscopic transport model UrQMD is used for this analysis. The predicted
Lambda/pi-, Xi-/pi- and Omega-/pi- ratios are enhanced due to rescattering in
central Pb-Pb collisions as compared to peripheral Pb-Pb or p-Pb collisions. A
reduction of the constituent quark masses to the current quark masses m_s \sim
230 MeV, m_q \sim 10 MeV, as motivated by chiral symmetry restoration, enhances
the hyperon yields to the experimentally observed high values. Similar results
are obtained by an ad hoc overall increase of the color electric field strength
(effective string tension of kappa=3 GeV/fm). The enhancement depends strongly
on the kinematical cuts. The maximum enhancement is predicted around
midrapidity. For Lambda's, strangeness suppression is predicted at
projectile/target rapidity. For Omega's, the predicted enhancement can be as
large as one order of magnitude. Comparisons of Pb-Pb data to proton induced
asymmetric (p-A) collisions are hampered due to the predicted strong asymmetry
in the various rapidity distributions of the different (strange) particle
species. In p-Pb collisions, strangeness is locally (in rapidity) not
conserved. The present comparison to the data of the WA97 and NA49
collaborations clearly supports the suggestion that conventional (free)
hadronic scenarios are unable to describe the observed high (anti-)hyperon
yields in central collisions. The doubling of the strangeness to nonstrange
suppression factor, gamma_s \approx 0.65, might be interpreted as a signal of a
phase of nearly massless particles.Comment: published version, discussion on strange mesons and new table added,
extended discussion on strange baryon yields. Latex, 20 pages, including 5
eps-figure
Parton rescattering and screening in Au+Au collisions at RHIC
We study the microscopic dynamics of quarks and gluons in relativistic heavy
ion collisions in the framework of the Parton Cascade Model. We use lowest
order perturbative QCD cross sections with fixed lower momentum cutoff p_0. We
calculate the time-evolution of the Debye-screening mass for Au+Au collisions
at sqrt(s)=200 GeV per nucleon pair. The screening mass is used to determine a
lower limit for the allowed range of p_0. We also determine the energy density
reached through hard and semi-hard processes at RHIC, obtain a lower bound for
the rapidity density of charged hadrons produced by semihard interactions, and
analyze the extent of perturbative rescattering among partons.Comment: 6 pages, 4 figures, uses RevTeX 4.0; revised version with minor
corrections and one updated figur
Hadronic freeze-out following a first order hadronization phase transition in ultrarelativistic heavy-ion collisions
We analyze the hadronic freeze-out in ultra-relativistic heavy ion collisions
at RHIC in a transport approach which combines hydrodynamics for the early,
dense, deconfined stage of the reaction with a microscopic non-equilibrium
model for the later hadronic stage at which the hydrodynamic equilibrium
assumptions are not valid. With this ansatz we are able to self-consistently
calculate the freeze-out of the system and determine space-time hypersurfaces
for individual hadron species. The space-time domains of the freeze-out for
several hadron species are found to be actually four-dimensional, and differ
drastically for the individual hadrons species. Freeze-out radii distributions
are similar in width for most hadron species, even though the Omega-baryon is
found to be emitted rather close to the phase boundary and shows the smallest
freeze-out radii and times among all baryon species. The total lifetime of the
system does not change by more than 10% when going from SPS to RHIC energies.Comment: 11 pages, 4 eps-figures included, revised versio
A Multi-Phase Transport model for nuclear collisions at RHIC
To study heavy ion collisions at energies available from the Relativistic
Heavy Ion Collider, we have developed a multi-phase transport model that
includes both initial partonic and final hadronic interactions. Specifically,
the parton cascade model ZPC, which uses as input the parton distribution from
the HIJING model, is extended to include the quark-gluon to hadronic matter
transition and also final-state hadronic interactions based on the ART model.
Predictions of the model for central Au on Au collisions at RHIC are reported.Comment: 7 pages, 4 figure
Enhanced antiproton production in Pb(160 AGeV)+Pb reactions: evidence for quark gluon matter?
The centrality dependence of the antiproton per participant ratio is studied
in Pb(160 AGeV)+Pb reactions. Antiproton production in collisions of heavy
nuclei at the CERN/SPS seems considerably enhanced as compared to conventional
hadronic physics, given by the antiproton production rates in and
antiproton annihilation in reactions. This enhancement is consistent
with the observation of strong in-medium effects in other hadronic observables
and may be an indication of partial restoration of chiral symmetry
Excitation Function of Energy Density and Partonic Degrees of Freedom in Relativistic Heavy Ion Collisions
We estimate the energy density pile-up at mid-rapidity in central Pb+Pb
collisions from 2 - 200 GeV/nucleon. The energy density is decomposed into
hadronic and partonic contributions. A detailed analysis of the collision
dynamics in the framework of a microscopic transport model shows the importance
of partonic degrees of freedom and rescattering of leading (di)quarks in the
early phase of the reaction for lab-energies > 30 GeV/nucleon. In Pb+Pb
collisions at 160 GeV/nucleon the energy density reaches up to 4 GeV/fm^3, 95%
of which are contained in partonic degrees of freedom.Comment: 10 pages, 4 figure
- …