514 research outputs found

    The Reionization of Carbon

    Full text link
    Observations suggest that CII was more abundant than CIV in the intergalactic medium towards the end of the hydrogen reionization epoch. This transition provides a unique opportunity to study the enrichment history of intergalactic gas and the growth of the ionizing background (UVB) at early times. We study how carbon absorption evolves from z=10-5 using a cosmological hydrodynamic simulation that includes a self-consistent multifrequency UVB as well as a well-constrained model for galactic outflows to disperse metals. Our predicted UVB is within 2-4 times that of Haardt & Madau (2012), which is fair agreement given the uncertainties. Nonetheless, we use a calibration in post-processing to account for Lyman-alpha forest measurements while preserving the predicted spectral slope and inhomogeneity. The UVB fluctuates spatially in such a way that it always exceeds the volume average in regions where metals are found. This implies both that a spatially-uniform UVB is a poor approximation and that metal absorption is not sensitive to the epoch when HII regions overlap globally even at column densites of 10^{12} cm^{-2}. We find, consistent with observations, that the CII mass fraction drops to low redshift while CIV rises owing the combined effects of a growing UVB and continued addition of carbon in low-density regions. This is mimicked in absorption statistics, which broadly agree with observations at z=6-3 while predicting that the absorber column density distributions rise steeply to the lowest observable columns. Our model reproduces the large observed scatter in the number of low-ionization absorbers per sightline, implying that the scatter does not indicate a partially-neutral Universe at z=6.Comment: 16 pages, 14 figures, accepted to MNRA

    The Snapshot Hubble U-Band Cluster Survey (SHUCS) II. Star Cluster Population of NGC 2997

    Get PDF
    We study the star cluster population of NGC 2997, a giant spiral galaxy located at 9.5 Mpc and targeted by the Snapshot Hubble U-band Cluster Survey (SHUCS). Combining our U-band imaging from SHUCS with archival BVI imaging from HST, we select a high confidence sample of clusters in the circumnuclear ring and disk through a combination of automatic detection procedures and visual inspection. The cluster luminosity functions in all four filters can be approximated by power-laws with indices of 1.7-1.7 to 2.3-2.3. Some deviations from pure power-law shape are observed, hinting at the presence of a high-mass truncation in the cluster mass function. However, upon inspection of the cluster mass function, we find it is consistent with a pure power-law of index 2.2±0.2-2.2\pm0.2 despite a slight bend at \sim2.5×1042.5\times10^{4} M_{\odot}. No statistically significant truncation is observed. From the cluster age distributions, we find a low rate of disruption (ζ0.1\zeta\sim-0.1) in both the disk and circumnuclear ring. Finally, we estimate the cluster formation efficiency (Γ\Gamma) over the last 100 Myr in each region, finding 7±27\pm2% for the disk, 12±412\pm4% for the circumnuclear ring, and 10±310\pm3% for the entire UBVI footprint. This study highlights the need for wide-field UBVI coverage of galaxies to study cluster populations in detail, though a small sample of clusters can provide significant insight into the characteristics of the population.Comment: 31 pages, 9 figures, accepted to the A

    On the Detection of Supermassive Primordial Stars. II. Blue Supergiants

    Get PDF
    Supermassive primordial stars in hot, atomically-cooling haloes at zz \sim 15 - 20 may have given birth to the first quasars in the universe. Most simulations of these rapidly accreting stars suggest that they are red, cool hypergiants, but more recent models indicate that some may have been bluer and hotter, with surface temperatures of 20,000 - 40,000 K. These stars have spectral features that are quite distinct from those of cooler stars and may have different detection limits in the near infrared (NIR) today. Here, we present spectra and AB magnitudes for hot, blue supermassive primordial stars calculated with the TLUSTY and CLOUDY codes. We find that photometric detections of these stars by the James Webb Space Telescope (JWST) will be limited to zz \lesssim 10 - 12, lower redshifts than those at which red stars can be found, because of quenching by their accretion envelopes. With moderate gravitational lensing, Euclid and the Wide-Field Infrared Space Telescope (WFIRST) could detect blue supermassive stars out to similar redshifts in wide-field surveys.Comment: 9 pages, 5 figures, accepted by MNRA

    Unlocking the secrets of stellar haloes using combined star counts and surface photometry

    Full text link
    The stellar haloes of galaxies can currently be studied either through observations of resolved halo stars or through surface photometry. Curiously, the two methods appear to give conflicting results, as a number of surface photometry measurements have revealed integrated colours that are too red to be reconciled with the halo properties inferred from the study of resolved stars. Several explanations for this anomaly have been proposed - including dust photoluminescence, extinction of extragalactic background light and a bottom-heavy stellar initial mass function. A decisive test is, however, still lacking. Here, we explain how observations of the halo of a nearby galaxy, involving a combination of both surface photometry and bright star counts, can be used to distinguish between the proposed explanations. We derive the observational requirements for this endeavour and find that star counts in filters VI and surface photometry in filters VIJ appears to be the optimal strategy. Since the required halo star counts are already available for many nearby galaxies, the most challenging part of this test is likely to be the optical surface photometry, which requires several nights of exposure time on a 4-8 m telescope, and the near-IR surface photometry, which is most readily carried out using the upcoming James Webb Space Telescope.Comment: 14 pages, 4 figures; v.2 matches published version (minor changes only

    Revealing a Ring-like Cluster Complex in a Tidal Tail of the Starburst Galaxy NGC 2146

    Get PDF
    We report the discovery of a ring-like cluster complex in the starburst galaxy NGC 2146. The Ruby Ring, so named due to its appearance, shows a clear ring-like distribution of star clusters around a central object. It is located in one of the tidal streams which surround the galaxy. NGC 2146 is part of the Snapshot Hubble U-band Cluster Survey (SHUCS). The WFC3/F336W data has added critical information to the available archival Hubble Space Telescope imaging set of NGC 2146, allowing us to determine ages, masses, and extinctions of the clusters in the Ruby Ring. These properties have then been used to investigate the formation of this extraordinary system. We find evidence of a spatial and temporal correlation between the central cluster and the clusters in the ring. The latter are about 4 Myr younger than the central cluster, which has an age of 7 Myr. This result is supported by the H alpha emission which is strongly coincident with the ring, and weaker at the position of the central cluster. From the derived total H alpha luminosity of the system we constrain the star formation rate density to be quite high, e.g. ~ 0.47 Msun/yr/kpc^2. The Ruby Ring is the product of an intense and localised burst of star formation, similar to the extended cluster complexes observed in M51 and the Antennae, but more impressive because is quite isolated. The central cluster contains only 5 % of the total stellar mass in the clusters that are determined within the complex. The ring-like morphology, the age spread, and the mass ratio support a triggering formation scenario for this complex. We discuss the formation of the Ruby Ring in a "collect & collapse" framework. The predictions made by this model agree quite well with the estimated bubble radius and expansion velocity produced by the feedback from the central cluster, making the Ruby Ring an interesting case of triggered star formation.Comment: 11 pages, 7 figures, 1 table; Accepted for publication in MNRA

    A Comprehensive Comparative Test of Seven Widely-Used Spectral Synthesis Models Against Multi-Band Photometry of Young Massive Star Clusters

    Get PDF
    We test the predictions of spectral synthesis models based on seven different massive-star prescriptions against Legacy ExtraGalactic UV Survey (LEGUS) observations of eight young massive clusters in two local galaxies, NGC 1566 and NGC 5253, chosen because predictions of all seven models are available at the published galactic metallicities. The high angular resolution, extensive cluster inventory and full near-ultraviolet to near-infrared photometric coverage make the LEGUS dataset excellent for this study. We account for both stellar and nebular emission in the models and try two different prescriptions for attenuation by dust. From Bayesian fits of model libraries to the observations, we find remarkably low dispersion in the median E(B-V) (~0.03 mag), stellar masses (~10^4 M_\odot) and ages (~1 Myr) derived for individual clusters using different models, although maximum discrepancies in these quantities can reach 0.09 mag and factors of 2.8 and 2.5, respectively. This is for ranges in median properties of 0.05-0.54 mag, 1.8-10x10^4 M_\odot and 1.6-40 Myr spanned by the clusters in our sample. In terms of best fit, the observations are slightly better reproduced by models with interacting binaries and least well reproduced by models with single rotating stars. Our study provides a first quantitative estimate of the accuracies and uncertainties of the most recent spectral synthesis models of young stellar populations, demonstrates the good progress of models in fitting high-quality observations, and highlights the needs for a larger cluster sample and more extensive tests of the model parameter space.Comment: Accepted for publication in MNRAS (14 Jan. 2016). 30 pages, 16 figures, 9 table

    Evidence for Environmentally Dependent Cluster Disruption in M83

    Full text link
    Using multi-wavelength imaging from the Wide Field Camera 3 on the Hubble Space Telescope we study the stellar cluster populations of two adjacent fields in the nearby face-on spiral galaxy, M83. The observations cover the galactic centre and reach out to ~6 kpc, thereby spanning a large range of environmental conditions, ideal for testing empirical laws of cluster disruption. The clusters are selected by visual inspection to be centrally concentrated, symmetric, and resolved on the images. We find that a large fraction of objects detected by automated algorithms (e.g. SExtractor or Daofind) are not clusters, but rather are associations. These are likely to disperse into the field on timescales of tens of Myr due to their lower stellar densities and not due to gas expulsion (i.e. they were never gravitationally bound). We split the sample into two discrete fields (inner and outer regions of the galaxy) and search for evidence of environmentally dependent cluster disruption. Colour-colour diagrams of the clusters, when compared to simple stellar population models, already indicate that a much larger fraction of the clusters in the outer field are older by tens of Myr than in the inner field. This impression is quantified by estimating each cluster's properties (age, mass, and extinction) and comparing the age/mass distributions between the two fields. Our results are inconsistent with "universal" age and mass distributions of clusters, and instead show that the ambient environment strongly affects the observed populations.Comment: 6 pages, 3 figures, MNRAS in pres
    corecore