2,981 research outputs found

    Temperature dependence of electron-spin relaxation in a single InAs quantum dot at zero applied magnetic field

    Full text link
    The temperature-dependent electron spin relaxation of positively charged excitons in a single InAs quantum dot (QD) was measured by time-resolved photoluminescence spectroscopy at zero applied magnetic fields. The experimental results show that the electron-spin relaxation is clearly divided into two different temperature regimes: (i) T < 50 K, spin relaxation depends on the dynamical nuclear spin polarization (DNSP) and is approximately temperature-independent, as predicted by Merkulov et al. (ii) T > about 50 K, spin relaxation speeds up with increasing temperature. A model of two LO phonon scattering process coupled with hyperfine interaction is proposed to account for the accelerated electron spin relaxation at higher temperatures.Comment: 10 pages, 4 figure

    Deep hashing with self-supervised asymmetric semantic excavation and margin-scalable constraint

    Get PDF
    Due to its effectivity and efficiency, deep hashing approaches are widely used for large-scale visual search. However, it is still challenging to produce compact and discriminative hash codes for images asso-ciated with multiple semantics for two main reasons, 1) similarity constraints designed in most of the existing methods are based upon an oversimplified similarity assignment (i.e., 0 for instance pairs sharing no label, 1 for instance pairs sharing at least 1 label), 2) the exploration in multi-semantic relevance are insufficient or even neglected in many of the existing methods. These problems significantly limit the dis-crimination of generated hash codes. In this paper, we propose a novel Deep Hashing with Self-Supervised Asymmetric Semantic Excavation and Margin-Scalable Constraint(SADH) approach to cope with these problems. SADH implements a self-supervised network to sufficiently preserve semantic information in a semantic feature dictionary and a semantic code dictionary for the semantics of the given dataset, which efficiently and precisely guides a feature learning network to preserve multi-label semantic information using an asymmetric learning strategy. By further exploiting semantic dictionaries, a new margin-scalable constraint is employed for both precise similarity searching and robust hash code generation. Extensive empirical research on four popular benchmarks validates the proposed method and shows it outperforms several state-of-the-art approaches. The source codes URL of our SADH is: http:// github.com/SWU-CS-MediaLab/SADH. (c) 2022 Elsevier B.V. All rights reserved.Computer Systems, Imagery and Medi

    Ambient Aqueous Growth of Cu2Te Nanostructures with Excellent Electrocatalytic Activity toward Sulfide Redox Shuttles.

    Full text link
    A new aqueous and scalable strategy to synthesize surfactant-free Cu2Te nanotubes and nanosheets at room temperature has been developed. In aqueous solution, Cu2E (E = O, S, Se) nanoparticles can be easily transformed into Cu2Te nanosheets and nanotubes via a simple anion exchange reaction under ambient conditions. The formation of Cu2Te nanosheets is ascribed to a novel exchange-peeling growth mechanism instead of simple Kirkendall effect; and the resultant nanosheets can be further rolled into nanotubes with assistance of stirring. The morphologies of Cu2Te nanosheets and nanotubes can be easily controlled by changing the synthesis parameters, such as the concentration of precursors, the size of nanoparticle precursor, and the amount of NaBH4, as well as the stirring speed. Thus-formed Cu2Te nanostructures exhibit excellent catalytic activity toward sulfide redox shuttles and are exploited as counter electrodes catalysts for quantum dot sensitized solar cells. The performance of Cu2Te nanostructures strongly depends on their morphology, and the solar cells made with counter electrodes from Cu2Te nanosheets show the maximum power conversion efficiency of 5.35%

    Magnetic field processing to enhance critical current densities of MgB2 superconductors

    Get PDF
    Magnetic field of up to 12 T was applied during the sintering process of pure MgB2 and carbon nanotube (CNT) doped MgB2 wires. We have demonstrated that magnetic field processing results in grain refinement, homogeneity and significant enhancement in Jc(H) and Hirr. The Jc of pure MgB2 wire increased by up to a factor of 3 to 4 and CNT doped MgB2 by up to an order of magnitude in high field region respectively, compared to that of the non-field processed samples. Hirr for CNT doped sample reached 7.7 T at 20 K. Magnetic field processing reduces the resistivity in CNT doped MgB2, straightens the entangled CNT and improves the adherence between CNTs and MgB2 matrix. No crystalline alignment of MgB2 was observed. This method can be easily scalable for a continuous production and represents a new milestone in the development of MgB2 superconductors and related systems

    Enhancement of Transition Temperature in FexSe0.5Te0.5 Film via Iron Vacancies

    Get PDF
    The effects of iron deficiency in FexSe0.5Te0.5 thin films (0.8<x<1) on superconductivity and electronic properties have been studied. A significant enhancement of the superconducting transition temperature (TC) up to 21K was observed in the most Fe deficient film (x=0.8). Based on the observed and simulated structural variation results, there is a high possibility that Fe vacancies can be formed in the FexSe0.5Te0.5 films. The enhancement of TC shows a strong relationship with the lattice strain effect induced by Fe vacancies. Importantly, the presence of Fe vacancies alters the charge carrier population by introducing electron charge carriers, with the Fe deficient film showing more metallic behavior than the defect-free film. Our study provides a means to enhance the superconductivity and tune the charge carriers via Fe vacancy, with no reliance on chemical doping.Comment: 15 pages, 4 figure

    Partial characterization of glutathione S-transferases from different field populations of Liposcelis bostrychophila

    Get PDF
    Glutathione S-transferases (GSTs) from different field populations of Liposcelis bostrychophila (Psocoptera: Liposcelididae) were purified by glutathione-agarose affinity chromatography and characterized subsequently by their Michaelis-Menten kinetics toward the artificial substrates 1-chloro- 2,4-dinitrobenzene (CDNB) and reduced glutathione (GSH). The specific activity of the affinity of purified GST toward CDNB was highest in lab population, 2.7-fold higher than that of Guanghan population with the lowest value observed. GSTs of lab population exhibited higher apparent Michaelis-Menten constants (Km) and higher maximal velocity (Vmax) values than those of Jianyang and Guanghan populations, revealing that the latter two populations exhibited significantly higher affinities to the test substrates. Inhibition kinetics showed that all test compounds (ethacrynic acid, curcumin, diethyl maleate, bromosulfalein, and carbosulfan) possessed significant inhibitory effects on GSTs. Curcumin appeared to be the most effective inhibitor. Compared to the other compounds, diethyl maleate and carbosulfan exhibited their I50s (the concentration required to inhibit 50% of GSTs activity) at higher concentrations.Keywords: GSTs, purification, Psocids, Xenobiotic compounds, Field population

    Antioxidant and Antihypertensive Activity Egg White Powder Produced by Pan Drying at Different Temperature and Drying Time

    Get PDF
    Antioxidant and antihypertensive (ACE-Inhibitors) are commonly known as bioactive molecules in foodstuff. Both molecules can be obtained naturally or through processing and preservation of egg white of poultry eggs. One way of preserving the egg white with drying method is by pan drying method. The objective of this study was to determine an appropriate temperature and drying time to produce high yield of antioxidant and antihypertensive activity. The materials used for this study were 900 eggs which were obtained from the same farm. That amount was calculated based on the number of experimental units required to run the experiment with the total number of treatment (3 x 3) with 4 replications for each treatment combination giving 25 chicken eggs for each treatment. The experiment was carried out using a 3x3 factorial arrangement according to completely randomized design. The first factor was drying temperature, i.e. 45oC, 50oC, and 55oC and the second factor was drying time, i.e. 30h, 39h, and 48h. The results showed that high antioxidant activity was found on egg white which was dried at temperature of 45oC for 39 hours which reached 26.85%. However, antihypertensive activity was optimum at 50oC and drying for 48 hours, which was up to 75.06%. Drying the egg white using appropriate temperature and time may improve the antioxidant and antihypertensive activities
    corecore