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Due to its effectivity and efficiency, deep hashing approaches are widely used for large-scale visual
search. However, it is still challenging to produce compact and discriminative hash codes for images asso-
ciated with multiple semantics for two main reasons, 1) similarity constraints designed in most of the
existing methods are based upon an oversimplified similarity assignment(i.e., 0 for instance pairs sharing
no label, 1 for instance pairs sharing at least 1 label), 2) the exploration in multi-semantic relevance are
insufficient or even neglected in many of the existing methods. These problems significantly limit the dis-
crimination of generated hash codes. In this paper, we propose a novel Deep Hashing with Self-
Supervised Asymmetric Semantic Excavation and Margin-Scalable Constraint(SADH) approach to cope
with these problems. SADH implements a self-supervised network to sufficiently preserve semantic
information in a semantic feature dictionary and a semantic code dictionary for the semantics of the
given dataset, which efficiently and precisely guides a feature learning network to preserve multi-label
semantic information using an asymmetric learning strategy. By further exploiting semantic dictionaries,
a new margin-scalable constraint is employed for both precise similarity searching and robust hash code
generation. Extensive empirical research on four popular benchmarks validates the proposed method and
shows it outperforms several state-of-the-art approaches. The source codes URL of our SADH is: http://
github.com/SWU-CS-MediaLab/SADH.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

The amount of image and video data in social networks and
search engines are growing at an alarming rate. In order to effec-
tively search large-scale high dimensional image data, Approxi-
mate Nearest Neighbor (ANN) search has been extensively
studied by researchers [1,2]. Semantic hashing, first proposed in
the pioneer work [3] is widely used in the field of large-scale image
retrieval. It maps high-dimensional content features of pictures
into Hamming space (binary space) to generate a low-
dimensional hash sequence [1,2], which reflects the semantic sim-
ilarity by distance between hash codes in the Hamming space.
Hash algorithms can be broadly divided into data-dependent
methods and data-independent methods [4] schemes. The most
basic but representative data independent method is Locality Sen-
sitive Hashing (LSH) [1], which generates embedding through ran-
dom projections. However, these methods all require long binary
code to achieve accuracy, which is not adapt to the processing of
large-scale visual data. Recent research priorities have shifted to
data-dependent approaches that can generate compact binary
codes by learning large amount of data and information. This type
of method embeds high-dimensional data into the Hamming space
and performs bitwise operations to find similar objects. Recent
data-dependent works such as [2,5–10] have shown better retrie-
val accuracy under smaller hash code length.

Although the above data-dependent hashing methods have cer-
tainly succeeded to some extent, they all use hand-crafted features,
thereby limiting the retrieval accuracy of learning binary code.
Recently, the deep-learning-based hashing methods have shown
superior performance by combining the powerful feature extrac-
tion of deep learning [11–16]. Admitting significant progress
achieved in large-scale image retrieval with deep hashing methods,
there still remain crucial bottlenecks that limit the hashing retrie-
val accuracy for datasets like NUS-WIDE [17], MS-COCO [18],
MIRFlickr-25K [19], where each image is annotated with multiple
semantics. Firstly, to the best of our knowledge, most of the exist-
ing supervised hashing methods use semantic-level labels to
examine the similarity between instance pairs following a com-
mon experimental protocol. That is, the similarity score will be
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assigned as ‘1’ if the item pair shares at least one semantic label
and ‘0’ if none of the semantic labels are shared. Based upon this
coarsely defined similarity metric, in many of the existing methods
[20,11,21], the exact degree of similarity (i.e., how many exact
semantics are shared) cannot be quantified, therefore they fail to
search for similarity information at a fine-grained level. Addition-
ally, by further utilizing semantic labels, exploring semantic rele-
vance to facilitate the similarity searching process can bring
numerous merits for hashing function learning, e.g., the inter-
class instance pairs can be better separated which can provide bet-
ter efficiency and robustness in the training process [22]; the
shared image representations can be learned which is beneficial
for hashing function learning [23]. Many existing deep hashing
methods ignore to leverage such valuable semantic information
[11–13,15,16], leading to inferior retrieval performance. A few of
the existing methods [24–26,23] solve this problem by adding an
auxiliary classifier to enhance the preservation of global semantic
information. However, the complex semantic correlations under
mentioned multi-label scenarios are still insufficiently discovered
and cannot be effectively embedded into hash codes.

To tackle the mentioned flaws, we proposed a novel Deep Hash-
ing with Self-Supervised Asymmetric Semantic Excavation and
Margin-Scalable Constraint (SADH) approach to improve the accu-
racy and efficiency of multi-label image retrieval. Holding the
motivation of thoroughly discover semantic relevance, as shown
in Fig. 1, in our work, in spite of using an auxiliary classifier follow-
ing methods like [24–26,23], semantic relevance from multi-label
annotations are thoroughly excavated through a self-supervised
Semantic-Network. While a convolutional neural network namely
Image-Network, projects original image inputs into semantic fea-
tures and hash codes. Inspired by methods like [27–30], we pro-
pose a novel asymmetric guidance mechanism to efficiently and
effectively transfer semantic information from Semantic-Network
to Image-Network, firstly we refine the abstract semantic features
Fig. 1. The overall framework of our proposed SADH, Image-Network plotted in blue back
Network plotted in yellow background is a self-supervised MLP network which abstracts
features into a semantic space through a semantic layer, and independently obtain class
Network is first trained until convergence, then global semantic information of the entir
such refined semantic information is transferred to Image-Network by asymmetric guidan
further utilized to dynamically assign each instance pairs of Image-Network with a scal
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and binary codes of the entire training set labels generated by
Semantic-Network into two semantic dictionaries by removing
the duplications, by which the global knowledge stored in seman-
tic dictionaries can seamlessly supervise the feature learning and
hashing generation of Image-Network for each sampled mini-
batch of input images with asymmetric association. Additionally,
we are also motivated to search pairwise similarity at a fine-
grained level. To this end, a well-defined margin-scalable pairwise
constraint is proposed. Unlike conventional similarity constraint
used in many existing methods [20,11,21] with which all the sim-
ilarity instance pairs are penalized with the same strength, by
looking up the semantic dictionaries, our margin-scalable con-
straint can dynamically penalize instance pairs with respect to
their corresponding semantic similarity in fine-grained level (i.e.,
for a given similarity score of one instance pair, the more identical
semantics they share, the larger penalty would be given on them),
with which our SADH is empowered to search for discriminative
visual feature representations and corresponding combat hashing
representations. The main contributions of this paper are as
follows:

� [1] We propose a novel end-to-end deep hashing framework
which consists of Image-Network and Semantic-Network. With
a novel asymmetric guidance mechanism, rich semantic infor-
mation preserved by Semantic-Network can be seamlessly
transferred to Image-Network, which can ensure that the global
semantic relevance can be sufficiently discovered and utilized
from multi-label annotations of the entire training set.

� [2] We devise a novel margin-scalable pairwise constraint
based upon the semantic dictionaries, which can effectively
search for precise pairwise similarity information in a semanti-
cally fine-grained level to facilitate the discrimination of gener-
ated hash codes.
ground is comprised of CNN layers for deep image representations, while Semantic-
semantic features from one-hot annotations as inputs. Both networks embeds deep
ification outputs and binary codes using multi-task learning framework. Semantic-
e training set labels is refined by Semantic-Network into two semantic dictionaries,
ce on both feature learning and hash code generation. The semantic dictionaries are
able margin in the pairwise constraint.
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� [3] Without losing generality, we comprehensively evaluate our
proposed method on CIFAR-10, NUS-WIDE, MS-COCO, and
MIRFlickr-25K to cope with image retrieval task, the effective-
ness of proposed modules in our method is endorsed by exhaus-
tive ablation studies. Additionally, we show how to seamlessly
extend our SADH algorithm from single-modal scenario to
multi-modal scenario. Extensive experiments demonstrate the
superiority of our SADH in both image retrieval and cross-
modal retrieval, as compared with several state-of-the-art
hashing methods.

2. Related work

In this section, we discuss works that are inspiring for our SADH
or relevant to four popular research topics in learning to hash.

2.1. Unsupervised hashing methods

The unsupervised hashing methods endeavors to learn a set of
hashing functions without any supervised information, they pre-
serve the geometric structure (e.g., the similarity between neigh-
boring samples) of the original data space, by which instance
pairs that are close in the original data space are projected into
similar hash codes, while the separated pairs in the original data
space are projected into dissimilar hash codes. Locality sensitive
hashing is the pioneer work of unsupervised hashing, which is first
proposed in [31,32], the basic idea of LSH is to learn a family of
hashing functions that assigns similar item pairs with a higher
probability of being mapped into the same hash code than dissim-
ilar ones. Following [31,32], many variants of LSH has been pro-
posed, e.g., [33–35] extends LSH from the traditional vector-to-
vector nearest neighbor search to subspace-to-subspace nearest
neighbor search with angular distance as subspace similarity met-
ric. Although LSH can effectively balance computational cost and
retrieval accuracy, but it has no exploration on the specific data
distributions and often reveals inferior performance. In this paper,
we focus on the data-dependent(learning to hash methods). The
representative unsupervised learning to hash method includes
ITQ [36] which is the first method that learns relaxed hash codes
with principal component analysis and iteratively minimize the
quantization loss. SH [8] proves the problem of finding good binary
code for a given dataset is equivalent to the NP-hard graph parti-
tioning problem, then the spectral relaxation scheme of the origi-
nal problem is solved by identify the eigenvector solution. LSMH
[37] utilizes matrix decomposition to refine the original feature
space into a latent feature space which makes both the latent fea-
tures and binary codes more discriminative, this simultaneous fea-
ture learning and hashing learning scheme is followed by many
latter methods. JSH [38] collaboratively optimize a regression term
which regress high-dimensional features into clustering centroids
that are viewed as anchors and a sparse feature selection term.
Unlike JSH which utilize anchor-based correlation, our SADH corre-
late global semantic label features with instance features. Mean-
while, using a deep hashing framework, the proper projection
from latent features to hash codes can be adaptively learned.

2.2. Supervised hashing methods

The supervised hashing methods can use the available super-
vised information such as labels or semantic affinities to guide fea-
ture extraction and hash code generation, which can achieve more
robust retrieval performance than unsupervised methods. Super-
vised hashing with kernel (KSH) [6] and supervised discrete hash-
ing (SDH) [39] generate binary hash codes by minimizing the
Hamming distance through similar data point pairs. Distortion
Minimization Hashing (DMS) [9], Minimum Loss Hashing (MLH)
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[40]. Binary Reconstruction Embedding(BRE) [9] learns hashing
function by minimizing the reconstruction loss to similarities in
the original feature space and Hamming space. In [41,42], Support
Vector Machine(SVM) is used to learn a set of hyperplanes as a
hash function family, by which the margin between the selected
support vectors belonging to similar and dissimilar pairs are max-
imized to generate discriminative binary codes. [43] utilize Binary
Matrix Factorization to extract semantic correlations from partially
provided social tags. Although the above hashing methods have
certainly succeeded to some extent, they all use hand-crafted fea-
tures that do not fully capture the semantic information and can-
not search for similarity information in latent feature space and
Hamming space simultaneously, thereby causing suboptimal prob-
lem. Recently, the deep learning-based hashing methods have
shown superior performance by exploiting the powerful feature
extraction of deep learning [40,44–54]. In particular, Convolutional
Neural Network Hash (CNNH) [23] is a two-stage hashing method,
where the pairwise similarity matrix is decomposed to approxi-
mate the optimal hash code representations which can directly
guide hash function learning. However, in the two-stage frame-
work of CNNH, the generation of latent features are not partici-
pated in the generation of approximate hash codes, so it fails to
perform simultaneous feature extraction and hash code learning
which limit the discrimination of hash codes. To solve this limita-
tion, Yan et al. [37] improved [23] by equally dividing the latent
features into pieces then projecting the pieces of features into
the bit-wise representations of hash codes under a one-stage
framework. Similarly DSPH[11] performs joint hash code learning
and feature learning under a one-stage framework. DDSH [20]
adopt an alternative training strategy to optimize the continuous
features and binary codes individually. DAGH [55] simultaneously
optimize an anchor regression term with the metric loss term,
which is beneficial for capturing the global anchor-graph similarity
information. Unlike DAGH which focus on tackling the anchor-
graph-based scenarios, our proposed SADH mainly focus on cap-
turing more global semantic correlation from multi-label
annotations.

Although these methods have obtained satisfactory retrieval
performance, they are still suboptimal for multi-label datasets, as
they fail to sufficiently discover semantic relevance from multi-
label annotations, additionally they only utilize the earlier men-
tioned coarsely defined similarity supervision(either 0 or 1), which
fails to construct more precise pairwise correlations between pairs
of hash codes and deep features, significantly downgrading retrie-
val accuracy. As stated by [56], multi-label images are widely
involved in many large-scaled image retrieval systems, so it is
valuable to improve the retrieval performance under this scenario.
Many recent works are proposed which aim to fully exploit seman-
tic labels in hash function learning. One natural and popular strat-
egy used in a number of recent methods like [24,57–62] is to add
an auxiliary classifier in the hashing network to learn the hashing
task and classification task simultaneously, which can provide
more robust hash function learning by preserving semantic-
specific features. A novel and effective methods DSEH [63] utilizes
a self-supervised semantic network to capture rich semantic infor-
mation from semantic labels to guide the feature learning network
which learns hash function for images. In comparison with auxil-
iary classifiers used in [24,57–62], the Semantic-Network used in
DESH [63] can capture more complex semantic correlations and
can directly supervise the hash code generation, which signifi-
cantly improves the retrieval performance in multi-label scenarios,
however DSEH uses a conventional negative log-likelihood objec-
tive function which still cannot search for similarity information
in a fine-grained level. Several methods design weighted ranking
loss to solve this problem, e.g., HashNet [14] tackle the ill-posed
gradient problem of learning discrete hash function by changing
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the widely used negative log-likelihood objective function [63,11]
into a Weighted Maximum Likelihood(WML) estimation. Yan et al.
propose an instance-aware hashing framework for multi-label
image retrieval in [56], where a weighted triplet loss is included
based upon multi-label annotations. Similarly, DSRH [64] designs
a Surrogate Loss, in which the NDCG score is calculated which is
related to the instance pairs’ shared number of labels. However,
since both [56,64] design their weighted ranking loss in triplet
form, they only consider preserving correct ranking of instances,
instead of directly optimizing the multi-level pairwise semantic
similarity. IDHN [65] calculate a soft semantic similarity score
(i.e., the cosine similarity between label pairs) to replace the
hard-assigned semantic similarity metric, which directly perform
as the supervision of negative log-likelihood pairwise loss.
Although the soft semantic similarity score used in IDHN and the
weight factor used in [56,14,64] can reflect multi-level semantic
similarity between labels, but they cannot guarantee that the pre-
defined similarity measurement such as NDCG and cosine similar-
ity is the optimal choice for supervising similarity searching of
hash codes.

Unlike these methods, we design a new similarity constraint in
a contrastive form [66], which contains a margin parameter which
can reflect the strength of supervision given on instance pairs.
Inspired by DSEH [63], we observe that, using a self-supervised
training scheme and taking semantic labels as inputs, Semantic-
Network can generate highly discriminative hash codes and its
retrieval performance is not sensitive to the selection of hyper-
parameter. Taking advantage of these characteristics of Semantic-
Network, we consider the pairwise similarity preserved by
Semantic-Net- work as the optimum of an ideal hash function,
by calculating a scalable margin factor for each item pairs with
respect to the corresponding semantic information stored by
Semantic-Network, our new similarity constraint can dynamically
and accurately penalize the item pairs with respect to multi-level
semantic similarity to learn combat hash codes. Note that the mar-
gin used in our method is originated form [66], this is different
from the hyperplane margin used in SVM-based methods like
[41,42], which is maximized between negative and positive sup-
port vectors. Additionally, a similar form of contrastive loss func-
tion can be also seen in MMHH [67], which also contains a
margin value. However different from our SADH, which is mainly
focus on multi-label image retrieval, MMHH is focused on alleviat-
ing the vulnerability to noisy data. In comparison with our scalable
margin, the margin used in MMHH is fixed based on manual selec-
tion, which is viewed as Hamming radius to truncate the con-
trastive loss, preventing it from being excessively large for noisy
data.

2.3. Asymmetric hashing methods

Most classical hashing methods build pairwise interaction in
symmetric form, recently asymmetric hashing methods have
shown the power of learning distinct hash functions and building
asymmetric interactions in similarity search. Asymmetric LSH
[27] extends LSH to solve the approximate Maximum Inner Pro-
duct Search (MIPS) problem by generalizing the MIPS problem to
an ANN problem with asymmetric transformation. However,
asymmetric LSH is data-independent and can hardly achieve satis-
factory result. SSAH [68] directly solve the MIPS problem by
approximating the full similarity matrix using asymmetric learning
structure. [29] theoretically interprets that there is an exponential
gap between the minimal binary code length of symmetric and
asymmetric hashing. NAMVH [62] learns a real-valued non-linear
embedding for novel query data and a multi-integer embedding
for the entire database and correlate two distinct embedding
asymmetrically. In the deep hashing framework ADSH [30], only
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query points are engaged in the stage of updating deep network
parameters, while the hash codes for database are directly learned
as a auxiliary variable, the hash codes generated by the query and
database are correlated through asymmetric pairwise constraints,
such that the dataset points can be efficiently utilized during the
hash function learning procedure. In comparison with [30] build-
ing asymmetric association between query and database, notably
the cross-modal hashing framework AGAH [69] is devoted to use
the asymmetric learning strategy to fully preserve semantic rele-
vance between multi-modal feature representations and their cor-
responding label information to eliminate modality gap. It
constructs asymmetric interaction between binary codes belong-
ing to heterogeneous modalities and semantic labels. Different
from AGAH, which separately learns hash function for each single
semantics to build asymmetric interaction with modalities, our
method leverage a self-supervised network to directly learn hash
function for multi-label annotations, which can indicate more
fine-grained similarity information. We preserve semantic infor-
mation from labels of the entire training set, which in turn being
refined in form of two semantic dictionaries. Comparing to DSEH
[63] which utilize an alternative training strategy and point-to-
point symmetric supervision, with the asymmetric guidance of
two dictionaries in our method, the global semantic relevance
can be more powerfully and efficiently transferred to hash codes
and latent feature generated by each sampled mini-batch of
images.

2.4. Cross-modal hashing methods

Cross-modal hashing (CMH) has become an active research area
since IMH [70] extends the scenario of hashing from similarity
search of traditional homogeneous data to heterogeneous data by
exploring inter-and-intra consistency and projecting the multi-
modality data to a common hamming space. Followed by which a
numberofCMHmethodsareproposed, representativeunsupervised
methods include LSSH [71] which is the first CMH method that
simultaneous do similarity search in latent feature space and Ham-
ming space, CMFH [72] uses collectivematrix factorization to corre-
late different modalities and CVH [73]which is the extension of SH
for solving cross-view retrieval. Similar to single modal hashing,
CMH can achieve more powerful performance with supervised
information. SCM [74] is the first attempt to integrate semantic
labels into a CMH framework. SePH [75]minimize the Kullback–Lei-
bler (KL) divergence between the pairwise similarity of labels and
hash codes. Recently, due to the powerful ability of deep learning
in feature extraction, more and more efforts have been devoted to
deep cross-modal hashing. Similar to DSPH [11], DCMH [76] and
PRDH [77] performs simultaneous feature learning and hash learn-
ing under and end-to-end framework. The preservation of semantic
relevance is also beneficial for bridging heterogeneous data. CPAH
[78] devise an adversarial module and classificationmodule to align
the feature distribution and semantic consistency betweendifferent
modality data. DCE [79] propose a collaborative latent space frame-
work that is capable of dealing with both single-modal and cross-
modal hashing tasks. Like DCE, our method SADH is also capable of
dealing with both scenarios. DSMHN [80] propose a deep multi-
task learning framework with auxiliary classifier, intra-modality
and inter-modality similarity constraint. SSAH [68] utilize the self-
supervised semantic network in a way that is similar to DSEH, to
learn a common semantic space for different modalities. In this
paper, although we mainly focus on the single-modal scenario, the
core components of our SADH algorithm can be seamlessly inte-
grated in a cross-modal hashing framework. The extension of our
method from single-modal to multi-modal scenarios is discussed,
and we demonstrate that our SADH can achieve state-of-the-art
experimental performance in both scenarios.
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3. The proposed method

We elaborate our proposed SADH in details. Firstly, the problem
formulation for hash function learning is presented. Afterwards,
each module as well as the optimization strategy in the
Semantic-Network and Image-Network are explicitly described.
As can be seen in the overall framework Fig. 1, SADH consists of
two networks, where Semantic-Network is a pure MLP network
for semantic preservation with labels in form of bag-of-words as
inputs. Image-Network utilizes convolutional neural network to
extract high-dimensional visual feature from images, which in turn
being projected into binary hash codes, with both deep features
(generated by semantic layer) and hash codes (generated by hash
layer) under asymmetric guidance of Semantic-Network as shown
in Fig. 1.

3.1. Problem definition

First the notations used in the rest of the paper are introduced.
Following methods like [63,24,39,64], we consider the common
image retrieval scenario where images are annotated by semantic
labels, let O ¼ olf gmi¼1 denote a dataset with m instances, and
ol ¼ v l; llð Þ where v l 2 R1�dv is the original image feature from the
l-th sample. Assuming that there are C classes in this dataset, oi will
be annotated with multi-label semantic ll ¼ li1; . . . ; lic½ �, where
lij ¼ 1 indicates that ol belongs to the j-th class, and lij ¼ 0 if not.
The image-feature matrix is noted as V, and the label matrix as L
for all instances. The pairwise multi-label similarity matrix S is
used to describe semantic similarities between each of the two
instances, where Si;j ¼ 1 means that Oi is semantically similar to
Oj, otherwise Si;j ¼ 0. In a multi-label setting, two instances
OlandOj
� �

are annotated by multiple labels. Thus, we define
Si;j ¼ 1, if Ol and Oj share at least one label, otherwise Si;j ¼ 0. The
main goal in deep hashing retrieval is to identify a nonlinear hash
function, i.e., H : o ! h 2 �1;1f gK , where K is the length of each
hash codes, to encode each item ol into a K-bit hash code
Hi 2 �1;1f g, whereby the correlation of all item pairs are main-
tained. The similarity between a hash code pair Hi;Hj are evaluated
by their Hamming distance disH Hi;Hj

� �
, which might be a challeng-

ing and costly calculation [81]. The inner-product Hi;Hj
� �

can be
used as a surrogate which relates to hamming distance as follows:

disH ¼ 1
2

K � Hi;Hj
� �� �

: ð1Þ
3.2. Self-supervised semantic network

To enrich the semantic information in generated hash codes, we
designed a self-supervised MLP network namely Semantic-
Network to leverage abundant semantic correlations from multi-
label annotations, the semantic information preserved by
Semantic-Network will be further refined to perform as the guid-
ance of the hash function learning process of Image-Network.

Semantic-Network extracts high-dimensional semantic fea-
tures through fully-connected layers with multi-label annotations

as inputs i:e:;Hl
i ¼ f l ll; h

l
� �� �

, where f l is the nonlinear hash func-

tion for Semantic-Network, while hl denotes the parameters for

Semantic-Network. With a sign function the learned Hl can be dis-
cretized into binary codes:

Bl ¼ sign Hl
� �

2 �1;1f gK : ð2Þ

For comprehensive preservation of semantic information especially
in multi-label scenarios, the abstract semantic features
91
Fl ¼ Fl
l; . . . ; F

l
n

h i
of Semantic-Network are also exploited to supervise

the semantic learning of Image-Network.

3.2.1. Cosine-distance-based similarity evaluation
In Hamming space, the similarity of two hash codes Hi;Hj can

be defined by the Hamming distance distH �; �ð Þ. To preserve the
similarity of item pairs, whereby similar pairs are clustered and
dissimilar pairs scattered, a similarity loss function of Semantic-
Network is defined as follows:

Js ¼
Xn

i;j¼1
si;jdisH Hi;Hj

� �þ 1� si;j
� �

max m� disH Hi;Hj
� �

;0
� �� �

ð3Þ
Where Js denotes the similarity loss function, by which the similar-
ity of two generated hash codes Hi and Hj can be preserved.
disH Hi;Hj

� �
represents the Hamming distance between Hi and Hj.

To avoid the collapsed scenario [21], a contrastive form of loss func-
tion is applied with a margin parameter m, with which the ham-
ming distance of generated hash code pairs are expected to be
less than m. With the mentioned relationship Eq. (1) between Ham-
ming distance and inner-product, the similarity loss can be rede-
fined as:

Js¼
1
2

Xn

i;j¼1
si;jmax m� Hi;Hj

� �
;0

� �þ 1�si;j
� �

max mþ Hi;Hj
� �

;0
� �� �

ð4Þ
where the margin parameter induce the inner-product of dissimilar
pairs to be less than �m, while that of similar ones to be larger than
m, note that this form of contrastive similarity constraint derives
from [66] where margin is a hyper-parameter which is different
from the hyper-plane margin used in SVM-based methods [41,42].
For enhancement of similarity preservation, we expect the similar-
ity constraint to be extended by ensuring the discrimination of deep
semantic features. However because of the difference between the
distributions of features from Semantic-Network and Image-
Network, the inner-product :; :h i 2 �1;1ð Þwill no longer be a plau-
sible choice for the similarity evaluation between the semantic fea-
tures of the two networks. As the choice of margin parameter m is
ambiguous. One way to resolve this flaw is to equip the two net-
works with the same activate function, for example a sigmoid or
tanh, at the output of the semantic layer to limit the scale of output
features to a fixed range, nevertheless we expect both of the net-
works to maintain their own scale of feature representations. Con-
sidering the fact that hash codes are discretized to either �1 or 1 at
each bit, meanwhile all generated hash codes have the same length
K, therefore in the similarity evaluation in Hamming space, we
choose to focus more on the angles between hash codes, instead
of the absolute distance between them. Hence we adopt the cosine
distance cos :; :ð Þ as a replacement:

cos Hi;Hj
� � ¼ < Hi;Hj >

kHikkHjk ð5Þ

where cos Hi;Hj
� � 2 �1;1ð Þ. Although pairwise label information is

adopted to store the semantic similarity of hash codes, the label
information is not fully exploit. Thus Semantic-Network will further
exploit semantic information with an auxiliary classifier as shown
in Fig. 1. Many recent works directly map the learned binary codes
into classification predictions by using a linear classifier [24,63]. To
prevent the interference between the classification stream and
hashing stream, and to avoid the classification performance being
too sensitive to the length of hash codes, we jointly learn the clas-
sification task and hashing task under a multi-task learning scheme
without mutual interference [82,83].

The final object function of Semantic-Network can be formu-
lated as:
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min
Bl ;hl ;L̂l

JLab

¼ aJ1 þ kJ2 þ gJ3 þ bJ4

¼ a
2

Pn
i;j¼1

Si;j max m� Dl
i;j;0

� �
þ 1� Si;j
� �

max mþ Dl
i;j; 0

� �

þ k
2

Pn
i;j¼1

Si;j max m� Cl
i;j; 0

� �
þ 1� Si;j
� �

max mþ Cl
i;j;0

� �

þ g jL̂l � L
��� ���j2

2
þ b jHl � Bl

��� ���j2
2

ð6Þ

where the margin is a manually-selected hyper-parameter
m 2 0;1ð Þ. Taking semantic labels as inputs and being trained in
self-supervised manner, it’s relatively easy for Semantic-Network
to achieve robust retrieval accuracy, and it’s performance is not sen-
sitive to the selection of margin value, with respect to the sensitiv-
ity analysis latter in 4.3.2., it can consistently achieve robust
performance when m is relatively small, so we directly set it as 0
in experiments. Jl and J2 are the similarity loss for the learned
semantic features and hash codes respectively with

Dl
i;j ¼ cos Fl

i; F
l
j

� �
;Cl

i;j ¼ cos Hl
i;H

l
j

� �
. The classification loss J3 calcu-

lates the difference between input labels and predicted labels. J4
is the quantization loss for the discretization of learned hash codes.

3.2.2. Global semantic preservation with semantic dictionary
construction

In existing self-supervised hashing methods [63,68], the self-
supervised network normally guides the deep hashing network
with a symmetric point-to-point strategy, hash codes generated
by one mini-batch of image are directly associated with the hash
codes generated by the corresponding mini-batch of labels. Under
such mechanism, the global semantic information is insufficiently
transferred to deep hashing network, meanwhile the similarity
search process excessively focus on the semantics that frequently
appear, whereas the semantics with lower frequency of occurrence
are relatively neglected. In this paper, we are motivated to alleviate
the mentioned drawbacks of existing guidance mechanism.
Inspired bymethods like [30,69], we seek for constructing an asym-
metric interaction between the output features of deep hashing
network and the global semantic information to significantly
empowered the effectiveness of similarity search. In this section
we first discuss how such global semantic information can be
extracted and refined into two semantic dictionaries.

As illustrated in Fig. 1, we first train Semantic-Network param-
eters until convergence to minimize Jlab w.r.t. the objective func-
tion Eq. (6), i.e., ~hl ¼ argmin

hl
Jlab. Next we fix the network

parameter ~hl of Semantic-Network and use it to refine the global
semantic information from the multi-label annotations of the
entire dataset into a semantic code dictionary U and a correspond-
ing semantic feature dictionary Q, this process can be formulated
as follows:

U ¼ sign r El
U

~hl;unique eL� �� �� �� �
ð7Þ

Q ¼ El
Q

~hl;unique eL� �� �
ð8Þ

where r is the tanh function. El
U and El

Q are binary code encoder and

semantic feature encoder respectively using Semantic-Network. eL
represents the multi-label annotations of the entire training set.
unique �ð Þ is the deduplication operation which summarizes the
multi-label annotations into unique representations. Note that

U ¼ uif gCi¼1 where ui 2 �1;1½ � and Q ¼ qif gCi¼1, where C is the total
number of deduplicated training set labels.
92
3.3. Deep feature learning network with asymmetric guidance

We apply an end-to-end convolutional neural network namely
Image-Network for image feature learning, which can extract and
embed deep visual features from images into high dimensional
semantic features and simultaneously project them into output
representations for multi-label classification task and hashing task,
similar to Semantic-Network, two tasks are learned simultane-
ously under a multi-task learning framework. The semantic feature
extraction and hash function learning of Image-Network will be
guided by the semantic dictionaries U and Q using an asymmetric
learning strategy, the asymmetric similarity constraint can be for-
mulated as follows:

Js ¼
Xn

i¼1

Xc

j¼1

1
2

si;j max m� cos Hi;uj
� �

;0
� ��

þ 1� si;j
� �

max mþ cos Hi;uj
� �

;0
� �Þ ð9Þ

where si;j is an asymmetric affinity matrix.

3.3.1. Margin-scalable constraint
In most contrastive or triplet similarity constraints used in

deep hash methods[84,85,30], the choice of the margin parame-
ter mainly relies on manual tuning. As demonstrated in Sec-
tion 4.3.2, we observe that, in comparison with the self-
supervised Semantic-Network, the deep Image-Network is fairly
sensitive to the choice of margin, which means that a good
selection of margin is valuable for robust hash function learning.
Additionally, in multi-label scenarios, it would be more desirable
if the margin can be scaled to be larger for item pairs that share
more semantic similarities than those less semantically similar
pairs, in this case the scale of margin can be equivalent to the
strength of constraint. Thus setting a single fixed margin value
may downgrade the storage of similarity information. Holding
the motivation of dynamically selecting optimized margin for
each sampled instance pairs with respect to their exact degree
of semantic similarity, we propose a margin-scalable similarity
constraint based on the semantic maps generated by Semantic-
Network. Relying on the insensitivity of Semantic-Network to
selection of margin, we leverage information in semantic dic-
tionaries to calculate scalable margin and to indicate relative
semantic similarity, i.e., for two hash codes Hv

i and Hv
j generated

by Image-Network, a pair of corresponding binary codes uHvi
and

uHvj
are represented by addressing the semantic code map U with

their semantic labels as index. The scalable margin MHi ;Hj
for Hv

i

and Hv
j is calculated by:

MHi ;Hj
¼ max 0; cos uHvi

;uHvj

� �� �
ð10Þ

As cos :; :ð Þ 2 �1;1ð Þ, a positive cosine distance between item
pairs in the semantic code dictionary will be assigned to similar
item pairs and will be used by Image-Network to calculate their
scalable margin, while the negative cosine distances will scale
the margin to 0. This is due to the nature of multi-label tasks,
where the ‘dissimilar’ situation only refers to item pairs with none
identical label. While for a similar item pair, the number of shared
labels may come from a wide range. Thus in similarity preserva-
tion, dissimilar items are given a weaker constraint, whereas the
similar pairs are constrained in a more precise and strict way.
For two sampled sets of hash codes or semantic features G1 and
G2 with size of n1 and n2, the margin-scalable constraint Jms can
be given by:
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Jms G1;G2ð Þ

¼
Xn1
i¼1

Xn2
j¼1

1
2 Si;jmax MGi ;Gj

� cos Gi
1;G

j
2

� �
;0

� ��

þ 1� Si;j
� �

max MGi ;Gj
� cos Gi

1;G
j
2

� �
;0

� � ð11Þ

The final object function of Image-Network can be formulated
as:

min
Bv ;hv ;bLv JImg

¼ aJ1 þ kJ2 þ aJ3 þ kJ4 þ gJ5 þ bJ6
¼ aJms Fv ; Fvð Þ þ kJms Hv ;Hvð Þ þ aJms F

v ;Qð Þ
þ kJms Hv ;Uð Þ þ gkbLv � Lk22 þ bkHv � Bvk22

ð12Þ

where Jl and J2 are margin-scalable losses for semantic features and
hash codes generated by Image-Network, with symmetric associa-
tion between instance pairs. J3 and J4 are margin-scalable losses
with asymmetric guidance of semantic dictionaries U and Q on hash
codes and semantic Features generated by Image-Network. J5 and J6
are classification loss and quantization loss similarly defined in
Semantic-Network.

3.4. Optimization

It is noteworthy to mention that, the Image-Network is trained
after the convergence of Semantic-Network is obtained. First we
iteratively optimize the objective function Eq. (6) by exploring

multi-label information to learn hl;Hl and bLl. With the finally
trained Semantic-Network we obtain U and Q. Then the parameters
of Semantic-Network will be fixed, and Limg will be optimized

through hv ;Hv and bLv with the guidance of U and Q. Finally, we
obtain binary hash codes B ¼ sign Hvð Þ. The entire learning algo-
rithm is summarized in Algorithm 1 in more detail.

3.4.1. Optimization of semantic-network

The gradient of JLab w.r.t each Hash code Hl
i in sampled mini-

batch is

@JLab
@Hl

i
¼

Pn
j¼1si;j¼1

k
2 m� Hl

j

kHl
ikkHl

jk
þ Hl

iC
l
i;j

kHl
ik22

	 

þ 2b Hl

i � Bl
i

� �
if si;j ¼ 1; Cl

i;j < m

Pn
j¼1si;j¼0

k
2 mþ Hl

j

kHl
ikkHl

jk
� Hl

iC
l
i;j

kHl
ik22

	 

þ 2b Hl

i � Bl
i

� �
if si;j ¼ 0; Cl

i;j > �m

8>>>>>>>>>><
>>>>>>>>>>:

ð13Þ

where Cl
i;j ¼ cos Hl

i;H
l
j

� �
. @JLab

@Flj
can be obtained similarly, @JLab

@hl
can be

computed by using the chain rule, then hl can be updated for each
iteration using Adam with back propagation.

3.4.2. Optimization of image-network
The gradient of JImg w.r.t each Hash code Hv

i in sampled mini-
batch is

@JImg

@Hv
i

¼ k
@J2
@Hv

i

þ k
@J4
@Hv

i

þ b
@J6
@Hv

i

ð14Þ

where
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@J2
@Hvi

¼

Pn
j¼1si;j¼1

1
2 MHi ;Hj

� Hvj
kHvi kkHvj k

þ Hvi C
v
i;j

kHvi k
2
2

	 

if si;j ¼ 1; MHi ;Hj

> Cv
i;j

Pn
j¼1si;j¼0

1
2

Hvi C
v
i;j

kHvi k
2
2
� Hvj

kHvi kkHvj k
�MHi ;Hj

	 

if si;j ¼ 0; MHi ;Hj

> Cv
i;j

8>>>>>>>>>><
>>>>>>>>>>:

where Cv
i;j ¼ cos Hv

i ;H
v
j

� �
. @J6

@Hvi
¼ 2 Hl

i � Bl
i

� �
, the calculation of @J4

@Hvi

resembles @J2
@Hvi

;
@JImg

@Fvi
can be obtained similarly to @JImg

@Hvi
;
@JImg
@hv can be com-

puted by using the chain rule, then hv can be updated for each iter-
ation using SGD with back propagation.

Algorithm 1: The learning algorithm of our SADH

Input:
Image set V , Label set L

Output:
semantic feature map Q , and semantic code map U,
parameters hv for Image-Network,
Optimal code matrix for Image-Network Bv

Initialization:

Initialize network parameters hl and hv

Hyper-parameters: a; k;g; b;m
Mini-batch size M, learning rate: lr
maximum iteration numbers tl; tv

Stage1: Hash learning for the self-supervised network
(Semantic-Network)
for tl iteration do
Calculate derivative using Eq. (13)

Update hl by using Adam and back propagation
end for
Update semantic feature map Q and semantic code map

U by Semantic-Network for each semantic as input
Stage2: Hash learning for the feature learning network

(Image-Network)
for tv iteration do
Calculate derivative using Eq. (14)
Update hv by using SGD and back propagation

end for
Update the parameter Bv by Bv ¼ sign Hv� �
3.5. Extension to cross-modal hashing

As mentioned in Section 2.4, hashing in Cross-modal scenarios
has arouse extensive attention of many researchers, in which a
common Hamming space is expected to be learned to perform
mutual retrieval between data of heterogeneous modalities. In this
paper, we mainly consider the single-modal retrieval of image
data, but the flexibility of margin-scalable constraint and asym-
metric guidance mechanism allows us to readily extend our SADH
algorithm to achieve cross-modal hashing. Suppose the training
instances consists of N different modalities, with corresponding

hash codes Hj; j ¼ 1; . . . ;N, and semantic features Fj; j ¼ 1; . . . ;N.
Then the extension of our proposed method in Eq. (4) can be for-
mulated as:
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min
Bj ;hj ;bLj

XN
j¼1

aJms F j; Fj
� �

þ kJms Hj;Hj
� �

þaJms Fj;Q
� �

þ kJms Hj;U
� �

þgkbLj � Ljk22 þ bkHj � Bjk22

ð15Þ

Without loss of generality, following methods like [76–78,28],
we focus on cross-modal retrieval for bi-modal data (i.e., image
and text) in experimental analysis.

4. Experiments and analysis

In this section, we conducted extensive experiments to verify
three main issues of our proposed SADH method: (1) To illustrate
the retrieval performance of SADH compared to existing state-of-
the-art methods. (2) To evaluate the improvements of efficiency
in our method compared to other methods. (3) To verify the effec-
tiveness of different modules proposed in our method.

4.1. Datasets and experimental settings

The evaluation is based on four mainstream image retrieval
datasets: CIFAR-10 [86], NUS-WIDE [17], MIRFlickr-25K [19], MS-
COCO [87].

CIFAR-10: CIFAR-10 contains 60,000 images with a resolution
of 32� 32. These images are divided into 10 different categories,
each with 6,000 images. In the CIFAR-10 experiments, following
[88], we select 100 images per category as testing set(a total of
1000) and query set, the remaining as database(a total of
59,000), 500 images per category are selected from the database
as a training set(a total of 5000).

NUS-WIDE: NUS-WIDE contains 269,648 image-text pairs. This
data set is a multi-label image set with 81 ground truth concepts.
Following a similar protocol as in [24,88], we use the subset of
195,834 images which are annotated by the 21 most frequent
classes (each category contains at least 5,000 images). Among
them, 100 image-text pairs and 500 image-text pairs are randomly
selected in each class as the query set (2100 in total) and the train-
ing set (10,500 in total), respectively. The remaining 193,734
image-text pairs are selected as database.

MIRFlickr-25K: The MIRFlickr25K dataset consists of 25,000
images collected from the Flickr website. Each instance is anno-
tated by one or more labels selected from 38 categories. We ran-
domly selected 1,000 images for the query set, 4,000 images for
the training set and the remaining images as the retrieval database.

MS-COCO: The MS-COCO dataset consists of 82,783 training
images and 40,504 validation images, each image is annotated
with at least one of the 80 semantics, we combine the training
set and validation set and prune the images with no categories,
which gives us 122,218 images. We randomly selected 5,000
images for the query set, 10,000 images for the training set and
the remaining images as the retrieval database. For cross-modal
retrieval, the text instances are presented in form of 2028-
dimensional Bag-of-Word vectors.

For image retrieval, we compare our proposed SADH with sev-
eral state-of-the-art approaches including LSH [1], SH [8], ITQ [2],
LFH [89], DSDH [24], HashNet [14], DPSH [11], DBDH [90], CSQ
[91] and DSEH [63] on all the four datasets. For cross-modal retrie-
val, we compare our SADH with 3 state-of-the-art deep cross-
modal hashing frameworks including DCMH[76], PRDH[77], SSA-
H[68]. These methods are briefly introduced as follows:

1. Locality-Sensitive Hashing (LSH) [1] is a data-inde-pendent
hashing method that employs random projections as hash
function.
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2. Spectral Hashing (SH) [8]is a spectral method which trans-
fers the original problem of finding the best hash codes for
a given dataset into the task of graph partitioning.

3. Iterative quantization (ITQ) [2] is a classical unsupervised
hashing method. It projects data points into a low dimen-
sional space by using principal component analysis (PCA),
then minimize the quantization error for hash code learning.

4. Latent Factor Hashing (LFH) [89] is a supervised method
based on latent hashing models with convergence guarantee
and linear-time variant.

5. Deep Supervised Discrete Hashing (DSDH) [24] is the first
supervised deep hashing method that simultaneously utilize
both semantic labels and pairwise supervised information,
the hash layer in DSDH is constrained to be binary codes.

6. HashNet [14] is a supervised deep architecture for hash code
learning, which includes a smooth activation function to
resolve the ill-posed gradient problem during training.

7. Deep pairwise-supervised hashing (DPSH) [11] is a represen-
tative deep supervised hashing method that jointly performs
feature learning and hash code learning for pairwise
application.

8. Deep balanced discrete hashing for image retrieval (DBDH)
[90] is a recent supervised deep hashing method which uses
a straight-through estimator to actualize discrete gradient
propagation.

9. Central Similarity Quantization for Efficient Image and Video
Retrieval (CSQ) [91] defines the correlation of hash codes
through a global similarity metric, to identify a common
center for each hash code pairs.

10. Deep Joint Semantic-Embedding Hashing (DSEH) [63] is a
supervised deep hashing method that employs a self-
supervised network to capture abundant semantic informa-
tion as guidance of a feature learning network.

11. Deep cross modal hashing (DCMH)[76] is a supervised deep
hashing method that integrates feature learning and hash
code learning in an end-to-end framework.

12. Pairwise Relationship Guided Deep Hashing (PRDH) [77] is a
supervised deep hashing method that utilize both intra-
modal and inter-modal pairwise constraints to search for
similarity information.

13. Self-supervised adversarial hashing networks for cross-
modal retrieval(SSAH) [68] is a deep supervised cross-
modal method that utilize a self-supervised network to con-
stitute a common semantic space to bridge data from image
modality and text modality.

Among the above approaches, LSH [1], SH [8], ITQ [2], LFH [89]
are non-deep hashing methods, for these methods, 4096-dimen-
tional deep features extracted from AlexNet [44] and 2048-
dimentio-nal deep features extracted from ResNet50 [40] are uti-
lized for two datasets: NUS-WIDE and CIFAR-10 as inputs, when
AlexNet features are used the baseline is named as ’method
name-A’. When ResNet50 features are used, the baseline is named
as ’method name-R’. The other six baselines (i.e., DSDH, HashNet,
DPSH, DBDH and DSEH) are deep hashing methods, for which
images on three dataset (i.e., NUS-WIDE, CIFAR-10 and
MIRFlickr-25 k) are resized to 224� 224 and used as inputs. LSH,
SH, ITQ, LFH, DSDH, HashNet, DPSH, DCMH and SSAH are carefully
carried out based on the source codes provided by the authors,
while for the rest of the methods, they are carefully implemented
by ourselves using parameters as suggested in the original papers.

We evaluate the retrieval quality by three widely used evaluat-
ing metrics: Mean Average Precision (MAP), Precision-Recall curve,
and Precision curve with the number of top returned results as
variable (topK-Precision).
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Specifically, given a query instance q, the Average Precision (AP)
is given by: AP qð Þ ¼ 1

nq

Pndatabase
i¼1 Pqi I ið Þ, where ndatabase is the total

number of instances in the database, nq is the number of similar
samples, Pqi is the probability of instances of retrieval results being
similar to the query instance at cut-off i, And I ið Þ is the indicator
function that indicates the i-th retrieval instance I is similar to
query image to q, if I ið Þ ¼ 1, and I ið Þ ¼ 0 otherwise.

The larger the MAP is, the better the retrieval performance.
Since NUS-WIDE is relatively large, we only consider the top
5,000 neighbors (MAP@5000), when computing MAP for NUS-
WIDE, while for CIFAR-10 and MIRFlickr-25 K, we calculate MAP
for the entire retrieval database (MAP-@ALL).
4.2. Implementation details

Semantic-Network is built with four fully-connected layers,
with which the input labels are transformed into hash codes
L ! 4096 ! 2048 ! Nð Þ. Here the output includes both the K-
dimensional hash code and the C-dimensional multi-label predic-
tions, N ¼ K þ C.

We built ImageNet based on ResNet50 [40], the extracted visual
features of ResNet are embedded into 2048-dimensional semantic
features, which is followed by the two extra layers (i.e., Hash layer
and Classification layer) with K nodes for hash code generation and
Table 1
Examples of top 10 retrieved images by SADH and DSDH on MIRFlickr-25 K for 48 bits. T
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C nodes for classification. It is noted that except for output layers,
the network is pre-trained on ImageNet dataset. The implementa-
tion of our method is based on the Pytorch framework and exe-
cuted on NVIDIA TITAN X GPUs for 120 epochs of training.

The Adam optimizer [92] is applied to Semantic-Network, while
the stochastic Gradient descent (SGD) method is applied to Image-
Network. The batch size is set to 64. The learning rates are chosen
from 10�3 to 10�8 with a momentum of 0.9.
4.3. Performance evaluation

4.3.1. Comparison to state of the art
To validate the retrieval performance of our method for image

retrieval, we compare the experimental results of SAD-H with
other state-of-the-art methods including LSH [1], SH [8], ITQ [2],
LFH [89], DSDH [24], HashNet [14], DPSH [11], DBDH [90], CSQ
[91] and DSEH [63] on CIFAR-10, NUS-WIDE, MIRFlickr-25 K and
MS-COCO. Table 1 shows the top 10 retrieved images in database
for 3 sampled images in MIRFlickr-25 K, it can be observed that
in difficult cases, SADH reveals better semantic consistency than
HashNet. Table 2 to Table 5 report the MAP results of different
methods, note that for NUS-WIDE, MAP is calculated for the top
5000 returned neighbors. Fig. 2–7 show the overall retrieval per-
formance of SADH compared to other baselines in terms of
he semantically incorrect images are marked with a red border.



Table 2
MAP@ALL on CIFAR-10 for image retrieval.

Method CIFAR-10 (MAP@ALL)

16 bits 32 bits 48 bits 64 bits

LSH-A [1] 0.4443 0.5302 0.5839 0.6326
ITQ-A [2] 0.2094 0.2355 0.2424 0.2535
SH-A [8] 0.1866 0.1900 0.2044 0.2020
LFH-A [89] 0.1599 0.1608 0.1705 0.1693
LSH-R [1] 0.1017 0.1018 0.1017 0.1020
ITQ-R [2] 0.1038 0.1040 0.1041 0.1043
SH-R [8] 0.1036 0.1031 0.1028 0.1029
LFH-R [89] 0.1041 0.1049 0.1048 0.1046
DSDH [24] 0.7514 0.7579 0.7808 0.7690
HashNet [14] 0.6975 0.7821 0.8045 0.8128
DPSH [11] 0.7870 0.7807 0.7982 0.8003
DBDH [90] 0.7892 0.7803 0.7797 0.7914
CSQ [91] 0.7761 0.7775 – 0.7741
DSEH [63] 0.8025 0.8130 0.8214 0.8301
SADH 0.8755 0.8832 0.8913 0.8783
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precision-recall curve and precision curves by varying the number
of top returned images, shown from 1 to 1000, on NUS-WIDE,
CIFAR-10, MS-COCO and MIRFlickr-25K respectively. SADH sub-
stantially outperforms all other state-of-the-art methods. It can
be noticed that SADH outperforms other methods for almost all
the leng-ths of hash bits with a steady performance on both data-
sets. This is due to the multi-task learning structure in our method
with which the classification output and hashing output are
obtained independently, and the two tasks are not mutually inter-
fered. It is also noteworthy that, with abundant semantic informa-
Fig. 2. precision-recall cu

Fig. 3. TopK-precision cu
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tion leveraged from the self-supervised network and the pairwise
information derived from the margin-scalable constraint, SADH
obtained an impressive retrieval performance on both single-
label datasets and multi-label datasets as shown in Table 3,Table 4.
4.3.2. Sensitivity analysis
Four hyper-parameters a; k; c; b are selected in the objective

functions Eq. (6) and Eq. (12). Here we examine the effect of differ-
ent selections of these hyper-parameters on the performance of
SADH in a range between 1e� 2 and 1eþ 2. As shown in Fig. 8,
the performance of SADH is relatively robust to the selection of
a; k and c, better performance can be obtained when the discretiza-
tion strength b is smaller than 1. The best performance can be
achieved when a ¼ 0:1; k ¼ 1; c ¼ 0:1; b ¼ 0:01.

To illustrate the earlier mentioned difference of two networks’
sensitivity to margin parameter in contrastive loss, we replace
the scalable margin module in Image-Network by margin constant
m in Semantic-Network and report their MAP with 48-bit length
under different choices of m on CIFAR-10 and MIRFlicker-25 K.
As shown in Fig. 9, we can see that under different choices of mar-
gin, Semantic-Network reveals relatively slight changes in MAP,
and it’s performance is consistently robust when m is relatively
small, so we set m as 0 for all the scenarios. While Image-
Network is highly sensitive to the choice of margin with a largest
MAP gap of roughly 0.14 at margin = 0 and margin = 0.2. Which
to some extend reveals the significance of proper selection of mar-
gin and the feasibility of calculating margin for different item pairs
rely on the hash codes generated by Semantic-Network based on
the insensitivity of its performance to the selection of margin
parameter.
rves on NUS-WIDE.

rves on NUS-WIDE.



Fig. 4. precision-recall curves on CIFAR-10.

Fig. 5. TopK-precision curves on CIFAR-10.

Fig. 6. precision-recall curves on MIR-Flickr25K.

Fig. 7. TopK-precision curves on MIR-Flickr25K.
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Table 3
MAP@5000 on NUS-WIDE for image retrieval.

Method NUS-WIDE (MAP@5000))

16 bits 32 bits 48 bits 64 bits

LSH-A [1] 0.4443 0.5302 0.5839 0.6326
ITQ-A [2] 0.2094 0.2355 0.2424 0.2535
SH-A [8] 0.1866 0.1900 0.2044 0.2020
LFH-A [89] 0.1599 0.1608 0.1705 0.1693
LSH-R [1] 0.4627 0.5180 0.5481 0.5750
ITQ-R [2] 0.2476 0.2722 0.2813 0.2895
SH-R [8] 0.2244 0.1938 0.1806 0.1922
LFH-R [89] 0.2347 0.2849 0.2997 0.2955
DSDH [24] 0.7941 0.8076 0.8318 0.8297
HashNet [14] 0.7554 0.8163 0.8340 0.8439
DPSH [11] 0.8094 0.8325 0.8441 0.8520
DBDH [90] 0.8052 0.8107 0.8277 0.8324
CSQ [91] 0.7853 0.8213 – 0.8316
DSEH [63] 0.7319 0.7466 0.7602 0.7721
SADH 0.8352 0.8454 0.8487 0.8646

Table 4
MAP@ALL on MIRFLICKR-25 K for image retrieval.

Method MIRFlickr-25 K (MAP@ALL)

16 bits 32 bits 48 bits 64 bits

DSDH [24] 0.7541 0.7574 0.7616 0.7680
HashNet [14] 0.7440 0.7685 0.7757 0.7815
DPSH [11] 0.7672 0.7694 0.7722 0.7772
DBDH [90] 0.7530 0.7615 0.7634 0.7653
CSQ [91] 0.6702 0.6735 – 0.6843
DSEH [63] 0.6832 0.6863 0.6974 0.6970
SADH 0.7731 0.7698 0.7993 0.7873

Table 5
MAP@ALL on MS-COCO for image retrieval.

Method MS-COCO (MAP@ALL)

16 bits 32 bits 48 bits 64 bits

DSDH [24] 0.6093 0.6482 0.6615 0.6740
HashNet [14] 0.6873 0.7184 0.7301 0.7362
DPSH [11] 0.6610 0.6825 0.6887 0.6850
DSEH [63] 0.5897 0.6048 0.6133 0.6188
SADH 0.7176 0.7507 0.7558 0.7736
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4.4. Empirical analysis

Three additional experimental settings are designed and used to
further analyse SADH.
Fig. 8. Sensitivity analysis of four hyper-parameters. The
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4.4.1. Ablation study
We investigate the impact of the different proposed modules on

the retrieval performance of SADH. SADH-sym refers is built by
replacing the asymmetric association between Image-Network
and Semantic-Network by conventional point-to-point symmetric
learning strategy, SADH-mars is built by removing the margin-
scalable constraint from Image-Network, SADH-cos refers to
replacing the cosine similarity module by the logarithm Maximum
a Posterior (MAP) estimation of pairwise similarity loss which is
used in many deep hashing approaches [63,24]:

Js ¼ �
Xm
i;j¼1

Si;jH
T
i Hj � log 1þ exp HT

i Hj

� �� �� �
ð16Þ

Results are shown in Table 6 for both NUS-WIDE and CIFAR-10 for
hash codes of 32 bits. Considering the results, we can see that the
asymmetric guidance from Semantic-Network with rich semantic
information plays an essential role on the performance of our
method, meanwhile the margin-scalable constraint from Image-
Network itself also significantly improves retrieval accuracy. It
can also be observed that when using the cosine similarity, better
performance is achieved than using the MAP estimation of pairwise
similarity.

As a further demonstration of the effectiveness of the margin-
scalable constraint, we compare it with several choices of single
constants on our SADH. For 50 epochs, the top 5000 MAP results
on MIR-Flickr25K and CIFAR-10 are given for every 10 epochs
dataset is NUS-WIDE and the code length is 64-bit.



Fig. 9. Sensitivity analysis on the margin parameter, the orange bars corresponds to the result of Semantic-Network, the blue bars corresponds to the result of Image-
Network.

Table 6
Ablation study on several modules in SADH, with MAP on NUS-WIDE and CIFAR-10 at
hash length 32 bits.

Methods NUS-WIDE (MAP@5000) CIFAR-10 (MAP@ALL)

SADH-sym 0.8031 0.8152
SADH-mars 0.8174 0.8249
SADH-cos 0.8168 0.8502
SADH 0.8454 0.8832
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respectively. As illustrated in Fig. 10, it is clear that in both the
single-labeled and multi-labeled scenario, a scalable margin
achieves better retrieval accuracy than using fixed margin con-
stants. Furthermore, it is observed that on CIFAR-10, scalable mar-
gin result in faster convergence of SADH during training.

4.4.2. Training efficiency analysis
Fig. 11 shows the change of MAP using 64-bit hash codes during

training time of 1000 s, with a comparison of SADH with DSEH,
DSDH, DBDH, and DPSH on NUS-WIDE. It is distinct that, SADH
costs significantly less time than the other methods to achieve a
similar MAP. In comparison with DPSH, SADH reduces training
time by approximately two times to achieve a MAP of 0.85. Fur-
Fig. 10. Map during 50 epochs on CIFAR-10 and M

99
thermore, SADH displays the tendency of convergence much ear-
lier than DSEH, with much high MAP. This is because Image-
Network and Semantic-Network are trained alternatively for mul-
tiple rounds in DSEH, with the generated hash codes and semantic
features of Image-Network being supervised by same number of
those generated by Semantic-Network. Whereas in SADH
Semantic-Network will cease to train after one round of conver-
gence. And the converged Semantic-Network will be utilized to
produce semantic dictionaries for each cases of semantic label.
The semantic dictionaries directly supervise Image-Network with
asymmetric pairwise correlation without further use of
Semantic-Network.
4.4.3. Visualization of hash codes
Fig. 12 is the t-SNE [93] visualization of hash codes generated

by DSDH and SADH on CIFAR-10, hash codes that belong to 10 dif-
ferent classes. Each class is assigned a different color. It can be
observed that hash codes in different categories are discrimina-
tively separated by SADH, while the hash codes generated by DSDH
do not show such a clear characteristic. This is because the cosine
similarity and scalable margin mechanism used in SADH can pro-
vide a more accurate inter-and-intra-class similarity preservation
resulting in more discriminative hash codes in comparison to the
mentioned form of pairwise similarity loss (16) used in DSDH.
IRFlickr-25 K with different choice of margins.



Fig. 11. Training time of SADH compared to 4 methods on NUS-WIDE with code length of 64.

Fig. 12. The t-SNE visualization of hash codes learned by DSDH and SADH.

Fig. 13. Grad-CAM visualization of SADH and DSDH for images sampled from multi-label benchmarks with respect to different ground-truth categories.
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Table 7
MAP@ALL on NUS-WIDE for cross-modal retrieval.

Task Method NUS-WIDE(MAP@ALL)

16bits 48bits 64bits

Image to Text SSAH [68] 0.6163 0.6278 0.6140
PRDH [77] 0.5919 0.6059 0.6116
DCMH [76] 0.5445 0.5597 0.5803
SADH-c 0.6536 0.6614 0.6663

Text to Image SSAH [68] 0.6204 0.6251 0.6349
PRDH [77] 0.6155 0.6286 0.6349
DCMH [76] 0.5793 0.5922 0.6014
SADH-c 0.6748 0.6821 0.6857

Table 8
MAP@ALL on MS-COCO for cross-modal retrieval.

Task Method MS-COCO(MAP@ALL)

16bits 48bits 64bits

Image to Text SSAH [68] 0.5204 0.5187 0.5272
PRDH [77] 0.5538 0.5672 0.5572
DCMH [76] 0.5228 0.5438 0.5419
SADH-c 0.6362 0.6679 0.6929

Text to Image SSAH [68] 0.4789 0.4753 0.4888
PRDH [77] 0.5122 0.5190 0.5404
DCMH [76] 0.4883 0.4942 0.5145
SADH-c 0.6347 0.6673 0.6834
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4.4.4. Heatmap visualization of focused regions
The Grad-CAM visualization of our SADH and DSDH following

[94] for sampled images on NUS-WIDE and MIR-Flickr25K is illus-
trated in Fig. 13. For each selected class of interest, Grad-CAM high-
lights the focused regions of convolutional feature maps. We
observe that, comparing to DSDH, our SADH can correlates selected
semantics with corresponding regions more accurately, which is a
strong proof for robust semantic feature preserving capacity of our
SADH especially for multi-label scenarios.
Fig. 14. Precision-recall curve on NUS-WIDE
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4.4.5. Extention: experiments on cross-modal hashing
As discussed earlier in Section 3.5, our SADH algorithm can be

seamlessly extended to cross-modal hashing. We devise a image-
text cross-modal hashing framework namely SADH-c by maintain-
ing the network architecture of Image-Network and Semantic-
Network and add a 3-layer MLP network with a multi-scale fusion
module to extract textual features and learn hash codes, which is
the same as the TxtNet used in SSAH. Table 7 and Table 8 show
the MAP result of our method and three other state-of-the-art deep
supervised cross-modal hashing methods: DCMH [76], PRDH [77],
SSAH [68] on MS-COCO and NUS-WIDE for cross-modal retrieval
between image data and text data, the according precision-recall
curves are shown in Fig. 14. Our approach substantially outper-
forms all comparison methods with particularly superior perfor-
mance in MS-COCO which has 80 semantics in total, this is a
strong evidence of the robustness of our method in multi-label
datasets. Comparing to SSAH, which utilizes point-to-point sym-
metric association and logarithmMaximum a Posterior (MAP) esti-
mation (16), the remarkable performance of our proposed method
is capacitated by the margin scalable pairwise constraint and
asymmetric guidance mechanism.
5. Conclusion

In this paper, we present a novel Deep Hashing with Self-Super-
vised Asymmetric Semantic Excavation and Margin-Scalable Con-
straint. To improve the reliability of retrieval performance in
multi-labeled scenarios, the proposed SADH preserve and refine
abundant semantic information from semantic labels in two
semantic dictionaries to supervise the 2nd framework Image-
Network with asymmetric guidance mechanism. A margin-
scalable constraint is designed to precisely search similarity infor-
mation in fine-grained level. Additionally, the proposed method is
seamlessly extended to cross-modal scenarios. Comprehensive
empirical evidence shows that SADH outperforms several state-
of-the-art methods including traditional methods and deep hash-
ing methods on FOUR widely used benchmarks. In the future, we
and MS-COCO for cross-modal hashing.
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will explore to more detailedly investigate the proposed SADH
method in deep hashing for multi-modal data retrieval.
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