5,167 research outputs found

    A Comparison of Methods for Determining the Age Distribution of Star Clusters: Application to the Large Magellanic Cloud

    Full text link
    The age distribution of star clusters in nearby galaxies plays a crucial role in evaluating the lifetimes and disruption mechanisms of the clusters. Two very different results have been found recently for the age distribution chi(t) of clusters in the Large Magellanic Cloud (LMC). We found that chi(t) can be described approximately by a power law chi(t) propto t^{gamma}, with gamma -0.8, by counting clusters in the mass-age plane, i.e., by constructing chi(t) directly from mass-limited samples. Gieles & Bastian inferred a value of gamma~, based on the slope of the relation between the maximum mass of clusters in equal intervals of log t, hereafter the M_max method, an indirect technique that requires additional assumptions about the upper end of the mass function. However, our own analysis shows that the M_max method gives a result consistent with our direct counting method for clusters in the LMC, namely chi(t) propto t^-0.8 for t<10^9 yr. The reason for the apparent discrepancy is that our analysis includes many massive (M>1.5x10^3 M_sol), recently formed (t<10^7 yr) clusters, which are known to exist in the LMC, whereas Gieles & Bastian are missing such clusters. We compile recent results from the literature showing that the age distribution of young star clusters in more than a dozen galaxies, including dwarf and giant galaxies, isolated and interacting galaxies, irregular and spiral galaxies, has a similar declining shape. We interpret this approximately "universal" shape as due primarily to the progressive disruption of star clusters over their first ~few x 10^8 yr, starting soon after formation, and discuss some observational and physical implications of this early disruption for stellar populations in galaxies.Comment: 21 pages, 5 figures, published in the Astrophysical Journal, volume 713, page 134

    The Age Distribution of Massive Star Clusters in the Antennae Galaxies

    Full text link
    We determine the age distribution of star clusters in the Antennae galaxies (NGC 4038/9) for two mass-limited samples (M > 3 x 10^4 M_{\odot} and M > 2 x 10^5 M_{\odot}). This is based on integrated broadband UBVI and narrowband H-alpha photometry from deep images taken with the Hubble Space Telescope. We find that the age distribution of the clusters declines steeply, approximately as dN/d\tau \propto \tau^{-1}. The median age of the clusters is ~10^7 yr, which we interpret as evidence for rapid disruption ("infant mortality"). It is very likely that most of the young clusters are not gravitationally bound and were disrupted near the times they formed by the energy and momentum input from young stars to the interstellar matter of the protoclusters. At least 20% and possibly all stars form in clusters and/or associations, including those that are unbound and short-lived.Comment: 11 pages, 2 figures. To appear in the ApJ Letters; Submitted 2004 July 29; accepted 2005 August

    Air data position-error calibration using state reconstruction techniques

    Get PDF
    During the highly maneuverable aircraft technology (HiMAT) flight test program recently completed at NASA Ames Research Center's Dryden Flight Research Facility, numerous problems were experienced in airspeed calibration. This necessitated the use of state reconstruction techniques to arrive at a position-error calibration. For the HiMAT aircraft, most of the calibration effort was expended on flights in which the air data pressure transducers were not performing accurately. Following discovery of this problem, the air data transducers of both aircraft were wrapped in heater blankets to correct the problem. Additional calibration flights were performed, and from the resulting data a satisfactory position-error calibration was obtained. This calibration and data obtained before installation of the heater blankets were used to develop an alternate calibration method. The alternate approach took advantage of high-quality inertial data that was readily available. A linearized Kalman filter (LKF) was used to reconstruct the aircraft's wind-relative trajectory; the trajectory was then used to separate transducer measurement errors from the aircraft position error. This calibration method is accurate and inexpensive. The LKF technique has an inherent advantage of requiring that no flight maneuvers be specially designed for airspeed calibrations. It is of particular use when the measurements of the wind-relative quantities are suspected to have transducer-related errors

    Flight and wind-tunnel comparisons of the inlet-airframe interaction of the F-15 airplane

    Get PDF
    The design of inlets and nozzles and their interactions with the airplane which may account for a large percentage of the total drag of modern high performance aircraft is discussed. The inlet/airframe interactions program and the flight tests conducted is described. Inlet drag and lift data from a 7.5% wind-tunnel model are compared with data from an F-15 airplane with instrumentation to match the model. Pressure coefficient variations with variable cowl angles, capture ratios, examples of flow interactions and angles of attack are for Mach numbers of 0.6, 0.9, 1.2, and 1.5 are presented

    Dynamical Masses of Young Star Clusters in NGC 4038/4039

    Get PDF
    In order to estimate the masses of the compact, young star clusters in the merging galaxy pair, NGC 4038/4039 (``the Antennae''), we have obtained medium and high resolution spectroscopy using ISAAC on VLT-UT1 and UVES on VLT-UT2 of five such clusters. The velocity dispersions were estimated using the stellar absorption features of CO at 2.29 microns and metal absorption lines at around 8500 \AA, including lines of the Calcium Triplet. The size scales and light profiles were measured from HST images. From these data and assuming Virial equilibrium, we estimated the masses of five clusters. The resulting masses range from 6.5 x 10^5 to 4.7 x 10^6 M_sun. These masses are large, factor of a few to more than 10 larger than the typical mass of a globular cluster in the Milky Way. The mass-to-light ratios for these clusters in the V- and K-bands in comparison with stellar synthesis models suggest that to first order the IMF slopes are approximately consistent with Salpeter for a mass range of 0.1 to 100 M_sun. However, the clusters show a significant range of possible IMF slopes or lower mass cut-offs and that these variations may correlate with the interstellar environment of the cluster. Comparison with the results of Fokker-Planck simulations of compact clusters with properties similar to the clusters studied here, suggest that they are likely to be long-lived and may lose a substantial fraction of their total mass. This mass loss would make the star clusters obtain masses which are comparable to the typical mass of a globular cluster.Comment: 16 pages, 12 figures, A&A accepte

    Photic effects on sustained performance

    Get PDF
    Research is described which evaluates manipulating environmental light intensity as a means to attenuate fatigue. A counter balanced, within-subjects design was used to compare nine male subjects exposed to dim (100 lux) and bright (3000 lux) light conditions. Oral temperature values were greater for the bright light group over the dim light condition. Melatonin levels were suppressed by bright light treatment. Also, the frequency of eye blink rate was less for subjects during bright over dim light exposure. Light exposure was without effect on subjective fatigue. However, irrespective of light condition, significant effects on confusion, fatigue, and vigor mood dimensions were found as a result of 30 hour sleep deprivation. The findings suggest that bright lights may be used to help sustain nocturnal activity otherwise susceptible to fatigue. Such findings may have implications for the lighting arrangements on space flights during the subjective night for astronauts
    corecore