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ALGORITHM WITH APPLICATIONS TO AIR-DATA RECONSTRUCTION
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HASA Amas Research Center
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ABSTRACT

The dynamics model and data sources used herein
to porform air~data reconstruction are discussed,
and a brief discusgion of the Kalman filter is
lneluded. The discussion indicatss the need for
adaptive determination of the nolpe statistics of
the process. The fllter innovations are presented
asz a means of developing the adaptive criterion,
which is based on the estimation of the true mean
and covariance of the filter innovations. A method
for ~he numnrical approximation of the mean and
covariance lnpovations is presented.

The algorithm as developed is applied to air-
data reconstructlen for the space shuttle, and data
obtainad from the third landing are presented. To
verify the performance of the adaptive algorithm,
the raconstruction ls also performed using a
constant covariance Kalman €ilter. The results of
the raconstructions are compared, and the adaptive
algorithm exhibits better performance.

SYMBOLS

A kinematlic accelaratinﬁ of aircraft

b white, Gauspian distributed unity
covariance error in measured system
response

c system geometry matrix, L X M dimen-
sioned matrix

e filter innevations vector, L x 1
dimensioned

F state-noise gain vector, M x 1 dimen-
sioned

T .

FF discrete-time state-noise covariance,
M x M dimensioned

£ rolloff fregquency of low-pass filter
uged in dynamics eguation

G measurement noise vector, L x 1

dimensioned

GGT meagurement noise covariance matrix,
I X L dimenaicned

k gquantity corresponding te kth sample

L dimensions of measurement vector

M dimensions of state vector

n ncnetationary digsturbance to state
dynamics

P filter error covariance matrix, M X M
dimensioned

t continuous=-tima index

v groundgpeed state used in dynamics
equation

vu airspeed state used ln dynamics
equation

W windspeed state used in dynamics
equation

X fosition state used in dynamics
equation

X state vector, M dimensioned

z measurement vector, T dimensioned

¢ discrete transition matrix, M x M
dimansioned

Mathematlcal operators:

cov({ ) covariance of quantity ({ )
dsde( } derivative of ( } with respect to
time .
E{ ) expectation of quantity { )
5( ) gample mean of quantity ( j
b
() transpose of { )

[ guantity estimated by filter
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Subsgriptas :

k valug of guantity at sample time k

k+1/k indicates quantity resulting from
axtrapolation step of filter

k+1/%4+1 indicates quantity resulting from
correction ntep of filter

INTRODUCTICH

Accurata eatimates of the ailr data of high-
speed alrcraft are essentlal to succeasfully per-
form flight regearch and developmantal tiisks.
Recant expansions of operational f£light unvelopas
have neceasitataed the develepmant of advanced
reconstruction techniques to obtain thesa esti-
mates. HMany of thesme techniques use a Kalman
filter to merge saveral data scurces to enhanca the
result. Most of these methods assume that random
disturbances in the alrcraft dynamics can be
accounted for by assuming constant filter statlis-
tlcs which are assumed to be known a priori.
Unfortunately, there is often little physical evi-
denca by which one can determine the statistics of
theoe random disturbances. In many cases the dis-
turbantes are nonstatlonary; in other words, in
such cases the random disturbances in the aircraft
dynamics can only be deacribed by time-varying sta-
tiastics. These cases include such unsteady regimes
as Elight in turbulence, high-angle~of-attack
flight, and aerostructural buffet., In such cases,
the statistics of random disturbances are often
selacted purely by gueaswork. The so-called "opti-
mal" results of such filters are cptimal only in
the sense that an evror criterion is minimized.

For nonatationary cases, the estimation scheme
must allow for the adaptive estimation of the sta-
tistles that describe random dlsturbances in the
aircraft dynamices as part of the filter loop. This
paper presents such an algorithm. The algorithm,
although primarily intended for applications to
air-data raconstruction, has applications to a
varlaty of other flelds. Because the space shuttle
ies known to encounter saveral or all of the above-
mentionad unsteady £light conditions during its
reentry, space shuttle reentry data are used to
varity the resulting algorithm.

ESTIMATION CONCEPT

The estimation problem is essentially cne of
complementary f£lltering. Data from four indepen-—
dent measurement sources are merged by means of the
filtering algorithm to give an enhanced rasult.

The data sources lnclude high=-, medium-, and low=~
frequency data. 'The high-frequency data are pro-
vided by a strapdown linear accelerometer packago}
the medium~frequency data are provided by a pair of
pneumatic hemispherical air-data gensors and C-band
radar tracking; and the low-frequency data are pro-
vided by a meteorological analysis of the atmog-
pheric conditions. The air date are complementary
te and blended with the meteorological data; the
accaleration data ara complementary to and blended

with the tracking data. Those are in turn com-
bined to glve aephanced estimates of the alrcraft
position, groundspeed, windspoed, and alrespeed.
The resulting estimates pomsess characterintics of
all four measuremsnt sources. A schematic of this
concept is presented in Fig. 1. Each of the data
gources is described in detail in the INFORMATION
SOURCES scctlon.

INFORMATION SOURCES

Pracking Data

Raday tracking data are obtained from a skin
track using an FP8~16, C-band, high-range tracking
syatem (Ref. 1), Provided are highly accurate,
medium-frequency measurements of the aircraft's »
range, azimuth, and elevation relative to the radar
site. The tracking data wers recorded at 20 Hz and
interpolated te 25 Hz.

Metaorologliocal Data

Stoady-state meteorologically derived wind and
barometric data are usad to provide accurate but
vory low frequency information concerning the dyna-
mics of the atmesphere along the reentry flight-
path:. The data are obtained by a series of woather
balloons launched at varicus times and locatione
along the anticipated flightpath. The raw data
thus obtainad wore corrected for diurnal and spa-~
tial variations (Ref. 2). Examination of time and
altitude variations in the data gives indlications
of both the steady-state magnitude and the turbul-
ance in the winds aloft. The meterclogical data
ware interpolated to 25 Hz using radar position
data.

Alr-Data Measurements

The air~data measurements are obtained from
a pair of side-mountad hemisphericgl pneumatic
sansor (Ref. 2). In addition to sensing turbu-
lence and compression caused by the local flow
fleld, the sensors are subject to pneumatic lag.
These factors are manifested as nonastationary
disturbances. The hemispherical szensor data are

" racorded at 12,5 Hz and interpolated to 25 Hz.

Strapdown Linear Accelerometer bata

High~frequency data concerning the aircraft's
inertial dynamics are provided by an onboard,
strapdovwn, linear accelerometer package (Ref. 2).
The accelerometer package, intended for aerodynamic
coefflcient identification, provides very high fre-
quency measuremants. The package, however, is not *
inertial quality and is subject to significant bias
arrors. Thus resulting data cannot be integrated
open loop. The strapdown data were rotated to ,
earth-relative topodetic coordinates bafore use in b4
the f£iltgr. 7The direction cosines used in perform-—
ing the rotation were obtained directly from the
shuttla's inertial measurament unit {(Ref. 3).
After rotation, the acceleration of gravity as a
function of! altitude was added to the vertical
component. The strapdown data are racorded at
176.8 Hz and decimated to 25 Hz.
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FILTER EQUATIONS

The dlscreote-time form of the Xalman filter
was used an the gtarting polnt for developing the
algorithm. The filter as mechanized consists of
three parallel filters, one for wsach topodoetic axis
component. The topodetic axis system (Flg. 2) is
defined go as to have its x~axis directed northward
with respact to tha local horizon, the y-axis
directed wastward, and the z-axis directed toward
tha center of the earth. Each component filter was
assumed to have four states: alrcreft position,
groundspeed, windspeod, 2nd true alrspeed. The
dynamlop equationa; although contipuous time, Are
eanily discretizoed by transition matrix lntegra-
tion. The matrix equation chosen to describa the
procese dynamicp is '

X s 1 o o X 0
v 0 0 o o v 1
aat |y 1=lo g ¢ ¢ w |t |oft 1)
Vw 0 -f ~f £ Vw 1
+ F{t) nit)

The relationships of ths states to the measured
data are

x1 1 o o o ";
VwJ =10 12 42 /20 0 (1b)
W o -1/2 12 wal|g,

+ G{t) h(t)e

In BEge. (1a) and [1b), the parameter £ repre-
sants a first-order low-pass filter rolloff fre-
quency. This parameter affects only the windepeed
and ajrppeed components of the filter., The low-
pass f£ilter terms are chosen sc as to insure that
the resulting windspeed and ajirspeed terms will be
smooth. '

The function n(t) represents & nonstatlonary
random disturbance in the process at time t. It
18 agsumed that the model of Eq. (1a) adequately
aceounts for all systematlc aircraft dynamice; as
a result, n(t) is assumed to be zero mean. The
vactor Fl{t), a four-eclement vecter, 1s used te
deacribe the relative effect of random disturbances
occurring at time t on each of the states. BSince
n(t) iz assumad to be zero mean, the vector product
of F with ltself is assumed to approxlimate the
covarliance of the random dlsturbances at time t.
Congequently, it is the vector product of F with
itself that must be identified by meang of the
adaptive criterion developed in the ADAPTATION
CRITERION section.

The function bi{t) represents an error in the
measuremant vector at time t. This qguantity is
assumed to ha locally stationary (that is, it has
statistics that vary slowly with time), and it has
a nonzero mean. The vector G(t), a three-element
veactor, is used to deseribe the respactive ampli-
tudes of the errors in each meagurement at time t.
The elements of G(t) are essentially measuremant

welghting factors. As a part of the adaptive
algorithm presented in the ESTIMATION OF INNO~-
VATIONS MEAN soction, tha bias errora in the
measurcd data are estimated and compensated for.
For thio rcason, the vector product of G(t) with
ltgelf is assumed to approximate the covariance of
the measurement errors at time t.

The first element of G(t) is usad to welght the
erroré that ara oxpacted to oceour in the radare-
darived position data. Radar poaition errors are
known to becrme significant for olevation angles of
less than 10°., For thin reason the first alement
of G(t) is prescribed to decrease linearly with
increasing elavation angle until elevation angle
resches 10°. At elevation anglas greater than 10°,
the Eirat element of G{t) 1s held constant. For
elevation angles less than 0°, the value of the
firat alement of G(t) is fixed at 1. A schematic
of thip welghting scheme is prosented in Fig. 3{a}.

The second element of G{t) is used to weight
the expected errors in the hemisphorical sensor-
derived airspeed data. Hemispherical sensor data
are known to become poor at high angles of attack.
Consegquently, for angles of attack greater than
10°, the sccond element of G(t) is prescribed to
increase linearly with angle of attack. For angles
of attack less than 10°, tha welghting is held
constant at 1. A schematic of this weighting
scheme is deplctad in Fig. (3b).

The third element of G(t)} is used to weight the
sxpected errors in the meteorologically derived
windspeed data. Bacauge little precise information
is available regarding the accuracy of these
measurments, these data are considered to be
equally accurate throughout the flight envelope.
For this reason, the third element of G{t) is held
congtant at 1.

ADAPTATION CRITERION

An mentioned previously, the statistics of the
random disturbances in the process dynamica are
assumed to vary as a function of time. For this
reason, we mist develop an adaptive criterion by
which these statistics can be aestimated. The adap-
tive scheme dlscussed in this papar uses infor-
mation provided by the f£ilter error vector. The
arror vector ls dafined as the difference betwean
the measured system response and the expected
system responsa. This vector, ey+q, is also called

the filter innovations, which 1s the name used
henceforth, The statistlecs of the Filter innova-~
tlone tell a great deal about how wall the filter
model is performing. Because of the assumptions
used in deriving the discrete Kalman filter, the
innovatiens should be a puraly white, Gausslan-
distributed, rarc-mean sequence. If such is the
casa, then one can be fairly confident that the
filter model is correct and that the resulting
egtimates are close to optimal (Ref. 4). If this
is not the case, then the parameters of the filter
modal are in errcr and information provided by the

innovations can be used to drive the assumed model
toward the correct model. This process is depicted
in Fig. 4. .
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ESTIMATION OF INNOVATIONS MEAN

Tha ¥Xalman filter ig an unhbiaced estimator;
consaquently, for unbiased measuremants, the mean
of the innovations should be exactly zero (Ref. 5).
If, however, there are biages in tha measurements,
the moan of the innovations will equal the axpected
biap error in the measurements, Measurament bias
errors do not usually change rapidly with time, and
for this resason the true mean can be approximated
by pamplod ptatistics. The sample mean can be
allowed to changs slowly with time by taking the
tima average over onls a fairly local raglon. The
time-averaged estimatu of the bias error E(ek ; can
ba recurasively subtracted from the measurement veo-
tor to form a transformed measuremant vector that
is nearly unblased. Using this transformed vector,
the eatimation algorithm proceeds as in the stan~
dard Kalman filter. .

ESTIMATION OF THE INNOVATIONS COVARIANCE

The negatlion of the approximate biases from the
measurement vector allows for considerable simpli-
fication of the adaptive process; the problem redu-
ces to one of estimating the mean square of the
innovaticns. This quantity is estimated in the
following manner: The actual syatem response is
glven to be related to the aystem states by some
geomatry matrix, C, and an error term, b(t)r that
is,

T = Oy + Gkby {2n)
Therefors, the expacted system response is glven bﬁ
Zi = Cxg (2b)
As a raesult (remembering that biases have been
removad), the innovations covariance is described
by
T
COV(ek) = E(zk - c“k/k-t}(zk - ka/k“1) (3a)
Substituting in Egq. {2n) for z gives

CDV(ek) = E[c(xk -ka/k_1) + GknkJ[F(xk

- T
- Xe/k-q) * Glr."‘k]
Now, since the meapurement noise is assumed to be

white and all biases have been previously removed,
the previous expression reduces to

COV(ek) - CE(xk - xk/k_1) (xk - xk/k_1)TCT + GG]'E

From the definition for the filter error covariance
matrix,

Prsi=1 = B{xk = x/x-1) (3 = mepie-1)”

wa got

cov(ex) = CPiyx-1 © + GG (3b)

The quantity COV ey ia computed as a part of
the galn oxpression in the standard implementation
of the digorete Kalman filter. Convenlently, using
the previcusly stated assumptions, the cevariance
of the innovation is available for use with no
additional computational expense.

ADAPTIVE COMPUTATION OF THE
STATE~HOIBE COVARIANCE

For the standard formulation of the dimgrete
Kalman filter, the state-nolne covarlance extrap-
olation otep is glven by

Prrisk ™ Py o7+ FFE {4a)

whara FFE is the state~noise covarianca and ¢
is the system transition matrix. Substituting
Eq. {4a) into Egq. {(3b} and roarranging gives

CFERC = cov(ey) - c(opk_,/k,1 @T)c - GGg  (4b)

If the geometxy matrix, Ck, is square and non~
singular, we can solve for the state-noise covarie
ance matrix directly. If the number of measure=-
mants does not equal the number of states, we can
expand the matrix equation to form a set of L
scalar agquations in M{M = 1) unknowns, where L la
the number of measurements and H is the number of
states. Wo then must assume that the off-diagonal
elements of the covariance matrix are insignifi-
cant, and the covariance matrix 1s essentlally
diagonal. This allows us to solve directly for I
of the diagonal elements in the state-noise covari-
ance matrix. In the case of Egq. (1}, we can solve
directly for the first, second, and fourth dlagonal
elements; the remalning element cen be solved for
by considering that by definition

Yo =V + W {4c)

from which wa reason that the third dlagonal ela-~
ment is simply the fum of the second and fourth
diagonal elements. Equation {4b} can now be imple-
mented as a part of the £ilter loop to glve n
closed-loop estimate of the covariance of random
disturbances in the aireraft dynamics.

PRESENTATION OF ADAPTIVE TECHNIQUE

Tha adaptive algorithm is presented in schema-
tic form in Fig. 5. The portion of Fig. 5 that
lies outside the dashed line represents the process
dynamica; the portion that lies inside the dashed
line represents the estimation loop. The arrcws
depict the flow of information through the filter.
The state-noise covariance is computed by means of
Eq. 4 as a part of the recursion of the filter.

APPLICATION OF ALGORITHM TO TRAJECTORY
RECONSTRUCTION PROBLEM

As o varification of its wvalidity, the adaptive

algorithm is now appliaed to the problem of air~-data
reconstruction, Data obtained f£rem the third space
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shuttle reentry (8T8=1) are chosen to illustrate
the preblem. The 5TS~3 landing at White Sands, New
Maxico, occurred on a worst=casa day. Exrremely
high winds and moderate~to~gsevere turbulence wore
known to exlst. Examination of landing-day rawin-
sonde and Jimaphore balloon data provided by the
Alr Force Flight Test Center at Edwards AFB Lndl-
cated that jetstream velocltles were meapured in
axcess of 150 knots. The Jimophere balloon was
obparved to have rise-rate oscillationo that varied
from 0 to 10 ft/secs Theoe wind conditions
axtonded throughout the troposphare and the lowar
stratosphere, Because of these conditions, the
vertical wind component was subjoct to graater ran-
dom varlaticn than has been exparienced during any
of the other spase shuttle recntriew. The condie-
tiona are suggestive of mountain gravity wave
activity. Analytical solutions documented in

Ref. 2 aleo suggest that this 1s the case. Such
conditions are known to produce highly nonstation-
ary disturbances (Refs., 2 and &),

The aire-data reconatruction was parformed
using the adaptive algorithm with arbitrary initial
covariances assumed for the state disturbances.
The measurement error covarlances ware chosan based
upon the prescribed methods mentioned earlier. To
vaerlfy the effectivencss of the adaptlive algorithm,
the alr~data raconstruction was also performad
uging a staridard implementation of the discrete
Kalman filter. The standard implementation wam
performed using the same initial covariances as
abover however, in this case both the state distur=-
bance and meagursement 2rror covariances were held
constant.

The results of the adaptive case are presented
in Fig. 6. Presented are comparisons of the
measured and reconstructed time histories of air-
speed (Fig, 6(a}), vertical windspeed (Fig. 6(b)},
and total horlzontal windspeed {Fig. (6¢}). Esti-
mates of these quantitles are the most heavily
affected by time variations in random atmospheric
disturbances. Inertial type guantities such as
position and groundspeed are less heavily affectad.
The results show no significant discraepancies
botween the measured and estimated values. Con-
idering the fact that mountain wave activity was
beliaved to exist, the vertical windapeeds,
although larga, are within believable limits. As
axpected, the filterad estimates exhibit higher
frequancies than do the meteorological winds.

The rosults of the nonadaptive estimates are
presented in Fig. 7, and similar comparisuns are
made. These comparisong show significant discre-
pancies. The estimates of alrspeed and horizontal
windspeed differ by more than 100 ft/sec. It is
not believed that the meteorological estimates
could have been this much in error. The verti-
cal wind estimate reaches a peak value of nearly
60 f£t/sec downdraft. Had these conditlons actually
oceurred, it is doubtful that the reentering space
shuttle conld havae cleared the lofty San Andreas

Mountaina that border the 818-3 landing site. In
Plg. 7 it is lntarastipg to note that tha behavior
of the standard filter beacomes more realis.ic
toward the and of the time histories. Theou data
correspond to data that were obtained just beforas
landing and several minutes after the shuttle had
dropped helow the reglons of heavy turbulepce and
mountain wave activity. Under thesae conditiona the
disturbances dropped to nearly zerc and no adaptive
antimation of the covariances of the disturbances
vara nacespary.

CONCLUDING REMARKS

An adaptiv: algorithm that can be used to
egtimate the ptate-nolse covariance for certaln
types of nonatationary processes has bheen deve=-
loped. The algorithm, which was devaeloped pri-
marily for the purpose of air-data reconstruction,
aceounts for lmproper knowledge of the state-
disturbance covariance matrix and, to Bome axtent,
accounts for unknown measurement bilases. The algo-
rithm is recursive and has the potential for real-
time implementation. Hecause the adaptation cri~
terion was formulated in a gencral sense, it has
applications to flelds other than alr-data
reconatruction.

An alr-data raconstruction problem for the
space shuttle is used to demonstrate the applica-
tion of the algorithm. fThe algorithm exhibits
superlor performance as compared with a standard
implementation of the discrete Kalman filter. The
algorithm has potential for solving many types of

© nohstatiopary estimation problems for which the

standard implemantation of the Xalman filter is
unguited.
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