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ABSTRACT

The dynamite model and data sources used heraln
to perform air-data reconstruction are discussed,
and a brief discussion of the Kalman filter is
included. The discussion indicates the need for
adaptive determination of the noise statistics of
the process. The filter innovations are presented
as a means of developing the adaptive criterion,
which is based on the estimation of the true mean
and covariance of the filter innovations. A method
for 'ihe numerical approximation of the mean and
covariance innovations is presented.

The algorithm as developed is applied to air-
data reconstruction for the apace shuttle, and data
obtained from the third landing are presented. To
verify the performance of the adaptive algorithm,
the reconstruction is also performed using a
constant covariance Kalman filter. The results of
the reconstructions are compared, and the adaptive
algorithm exhibits better performance.

GOT measurement noise covariance matrix,
L x L dimensioned

k quantity corresponding to kth sample

L dimensions of measurement vector

M dimensions of state vector

n nonstationary disturbance to state
dynamics

p filter error covariance matrix, M x M

dimensioned

t continuous-time index

V groundspeed state used in dynamics
equation

Vw airspeed state used in dynamite
equation

W windspeed state used in dynamite
equation

X position state used in dynamite
tquation

x state vector, M dimensioned

z measurement vector, L dimensioned

m discrete transition matrix, M x M
dimensioned

Mathematical operators,

COV(	 ) covarianco of quantity (	 )

d/dt(	 ) derivative of (	 ) with respect to
time

E( )	 expectation of quantity ( )

S( )	 sample mean of quantity ( )

( )T	transpose of ( )

(-)	 quantity estimated by filter

SYMBOLS

A kinematic acceleration of aircraft

b white, Gaussian distributed unity
covariance error in measured system
response

C system geometry matrix, L x M dimen-
sioned matrix

e filter innovations vector, L x 1
dimensioned

F state-noise gain vector, M x 1 . dimen-
sioned

CA	 FF'T discrete-time state-noise covariance,
M x M dlrensioned

f rolloff frequency of low-pass filter
used in dynamics equation

G measurement noise vector, L x 1
dimensioned
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Subsoripta,

value of quantity at sample time k

k+1/k	 Indicates quantity resulting from
extrapolation step of filter

k+1/k+1	 indicates quantity resulting from
correction step of filter

INTRODUCTION

Accurate estimated of the air data of high-
speed aircraft are essential to succeast;llly per-
form flight research and developmental tusks.
Recent expansions of operational flight envelopes
have necessitated the development of advanced
reconstruction techniques to obtain those esti-
mates. Many of these techniques use a Kalman
filter to merge several data sources to enhance the
result. Mont of these methods assume that random
disturbances in the aircraft dynamite can be
accounted for by seaming constant filter statiR-
tics which are assumed to be known a priori.
Unfortunately, there is often little physical evi-
dence by which one can determine the statistics of
these random disturbances. In many cases the did-
turbantes are nonstationaryl in other words, in
such cases the random disturbances in the aircraft
dynamite can only be described by time-varying ate-
tietice. These cases include such unsteady regimen
as flight in turbulence, high-angle-of-attack
flight, and aerostructural buffet. In such casoa,
the statistics of random disturbances are often
selected purely by guesswork. The so-called "opti-
mal" results of such filters are optimal only in
the sense that an error criterion is minimized.

For nonstationary canes, the estimation scheme
must allow for the adaptive estimation of the sta-
tistics that describe random disturbances in the
aircraft dynamite as part of the filter loop. This
paper presents such an algorithm. The algorithm,
although primarily intended for applications to
air-data reconstruction, has applications to a
variety of other fields. Because the space shuttle
in known to encounter several or all of the above-
mentioned unsteady flight. conditions during its
reentry, apace shuttle reentry data are used to
verity the resulting algorithm.

ESTIMATION CONCEPT

The estimation problem is essentially one of
complementary filtering. Data from four indepen-
dent measurement sources are merged by means of the
filtering algorithm to give an enhanced result.
The data sources include high-, medium-, and low-
frequency data. The high-frequency data are pro-
vided by a strapdown linear accelerometer package)
the medium-frequency data are provided by a pair of
pneumatic hemispherical air-data sensors and C-band
radar trackingl and the low-frequency data are pro-
vided by a meteorological analysis of theatmos-
pheric conditions. The air data are complementary
to and blended with the meteorological datai the
acceleration data are complementary to and blended

with 0e tracking data. Those are in turn com-
bined to give enhanced estimated of the aircraft
positions groundspeed, windspoed, and airepeed.
The resulting estimates poeness characterintica of
all four measurement sources. A schematic of this
concept in presented in Fig. 1. Each of the data
sources is described in detail in the INFORMATION
SOURCES section.

INFORMATION SOURCES

Tracking Data

Radar tracking data are obtained from a akin
track using an FPS-16, C-band, high-range tracking
system (Ref. 1). Provided are highly accurate,
medium-frequency measurements of the aircraft's
range, azimuth, and elevation relative to the radar
Bite. The tracking data were recorded at 20 HE and
interpolated to 25 Hz.

Meteorological Data

Steady-state meteorologically derived wind and
barometric data are used to provide accurate but
very low frequency information concerning the dyna-
mics of the atmosphere along the reentry flight-
path. The data are obtained by a series of weather
balloons launched at various times and locations
along the anticipated flightpath. The raw data
thus obtained were corrected for diurnal and Spa-
tial variations (Ref. 2). Examination of time and
altitude variations in the data gives indications
of both the steady-state magnitude and the turbul-
ence in the winds aloft. The meterological data
were interpolated to 25 Hz using radar position
data.

Air-Data Measurements

The air-data measurements are obtained from
a pair of aide-mounted hemispherical pneumatic
sensor (Ref. 2). In addition to sensing turbu-
lence and compression caused by the local flow
field, the sensors are subject to pneumatic lag.
These factors are manifested an nonatatiorary
disturbances. The hemispherical sensor data are
recorded at 12.5 Hz and interpolated to 25 Hz.

Strapdown Linear Accelerometer Data

High-frequency data concerning the aircraft's
inertial dynamite are provided by an onboard,
Strapdown, linear accelerometer package (Ref. 2).
The accelerometer package, intended for aerodynamic
coefficient identification, provides very high fre-
quency measurements. The package, however, is not
inertial quality and is subject to significant bide
errors. Thus resulting data cannot be integrated
open loop. The Strapdown data wore rotated to
earth-relative topodotic coordinates before use in
the filter. The direction canines used in perform-
ing the rotation were obtained directly from the
shuttle's inertial measurement unit (Ref. 3).
After rotation, the acceleration of gravity as a
function 0f) altitude was added to the vertical
component. The etrapdown data are recorded at
176.8 Hz and decimated to 25 Hz.

I
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FILTER EQUATIONS

The dtscrote-time form of the Kalman filter
was used as the starting point for developing the
algorithm. The filter as mechanized consists of
three parallel filters, one for each topodetic axis
component. The topodatic axis system (Fig. 2) is
defined so an to have its x-axis directed northward
with respect to the local horizon, the y-axis
directed aaetward, and the z-axis directed toward
the center of the earth. Each component filter was
assumed to have four stateni aircraft position,
groundspeed, windspeed, a,nd true airspeed. The
dynamics equations, although continuous time, are
easily discratized by transition matrix Integra-
tion. The matrix equation chosen to describe the
process dynamite to

d/dt [^
	 [10	 01	 00	 0	 V	

Is)
W	 0 -f -f f W

VW	 0 -f f f Vw1 +['011A

t

+ F(t) n(t)

The relationships of the states to the measured
data are

x	 1	 0	 0	 0	
x

I
I
I'

Yw	 0	 1/2 1/2 1/2	
H	

(1b)
(.H	 10, 	 1/Z 1/2	 vw

+ G(t) b(t)c

In Ego. (1a) and (1b), the parameter f repre-
cents a first-order low-pass filter rolloff fre-
quency. This parameter affects only the windspeed
and airspeed components of the filter. The low-
Pens filter terms are chosen so as to insure that
the resulting windspeed and airspeed terms will be
smooth.

The function n(t) represents a nonstationary
random disturbance in the process at time t. It
is assumed that the model of Eq. (Is) adequately
accounts for all systematic aircraft dynamicsi as
a result, n(t) is assumed to be zero mean. The
vector F(t), a four-element vector, is used to
describe the relative effect of random disturbances
occurring at time t on each of the states. Since
n(t) is assumed to be zero mean, the vector product
of F with itself is assumed to approximate the
covariance of the random disturbances at time t.
Consequently, it is the vector product of F with
itself that must be identified by means of the
adaptive criterion developed in the ADAPTATION
CRITERION section.

weighting factors. As a part of the adaptive
algorithm presented in the ESTIMATION OF INNO-
VATIONS MEAN section, the bias errors in the
measured data are estimated and componeatod for.
For thin reason, the vector product of G(t) with
itself is assumed to approximate the covariance of
the measurement errors at time t.

The first element of G(t) is used to weight the
arrorx that are expected to occur in the rodar-
derived position data. Radar position errors are
known to bacnme significant for elevation angles of
less than 10 • . For this reason the first element
of G(t) is prescribed to decrease linearly with
increasing elevation angle until elevation angle
reaches 10^. At elevation angles greater than 100,
the first clement of G(t) is hold constant. For
elevation angles less than 0 0 , the value of the
first element of G(t) is fixed at 1. A schematic
of this weighting scheme is presented in Fig. 3(a).

The second clement of G(t) is used to weight
the expected errors in the hemispherical sensor-
derived airspeed data. Hemispherical sensor data
are known to become poor at high angles of Attack.
Consequently, for angles of attack greater than
10 . , the second element of G(t) is prescribed to
increase linearly with angle of Attack. For angles
of attack less than 10 0 , the weighting is held
constant at 1. A schematic of this weighting
scheme is depicted in Fig. (3b).

The third clement of G(t) is used to weight the
expected errors in the meteorologically derived
windspeed data. Because little preciso information
is available regarding the accuracy of these
measurments, these data are considered to be
equally accurate throughout the flight envelope.
For this reason, the third element of G(t) is held
constant at 1.

ADAPTATION CRITERION

An mentioned previously, the statistics of the
random disturbances in the process dynamics are
assumed to vary as a function of time. For this
reason, we must develop an adaptive criterion by
which these statistics can be estimated. The adap-
tive scheme discussed in this paper uses infor-
mation provided by the filter error vector. The
error vector is defined as the difference between
the measured system response and the expected
system response. This vector, ck+11 is also called

the filter innovations, which is the name used
henceforth. The statistics of the filter innova-
tions tell a great deal about how well the filter
model is performing. Because of the assumptions
teed in deriving the discrete Kalman filter, the
innovations should be a purely white, Gaussian-
distributed, zuro-mean sequence. If ouch is the
case, then one can be fairly .confident that the
filter model is correct and that the resulting
estimates are close to optimal (Ref. 4). If this
is not the case, then the parameters of the filter
model are in error and information provided by the
innovations can be used to drive the assumed model
toward the correct model. This process is depicted
in Fig. 4.

M The function b(t) represents an error in the
measurement vector at time t. This quantity is
assumed to be locally stationary (that is, it has
statistics that vary slowly with time), and it has
a nonzero mean. The vector G(t), a three-clement
vector, is used to describe the respective ampli-
tudes of the errors in each measurement at time t.
The elements of G(t) are essentially measurement

f
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ESTIMATION OF INNOVATIONS MEAN

The Kalman filter is an unbiased estimatorl
consequently, for unbiased measurements, the mean
of the innovations should be exactly zero (Ref. 5).
If, however, there are biases in thn measurements,
the moan of the innovations will equal the expected
bier error in the measurements. Measurement bias
errors do not usually change rapidly with time, and
for this reason the true mean can be approximated
by sampled statistics. The sample mean can be
allowed to change slowly with time by taking the
time average over onl;r a fairly local region. The
time-averaged estimat y of the bias error S(ek), can
be recursively subtracted from the measurement vec-
tor to form a transformed measurement vector that
isnearly unbiased. Using thin transformed vector,
the estimation algorithm proceeds us in the stan-
dard Kalman filter.

ESTIMATION OF THE INNOVATIONS COVARIANCE

The negation of the approximate biases from the
measurement vector allows for considerable simpli-
fication of the adaptive process; the problem redu-
cee to one of estimating the mean square of the
innovations. This quantity in estimated in the
following manner, The actual system response is
given to be related to the system states by some
geometry matrix, C, and an error term, b(t)t that
le,

rk = Cxk + Gkbk	 (2a)

Therefore, the expected system response, is given by

zk - ON	 (2b)

As a result (remembering that biases have been
removed), the innovations covariance is described
by

The quantity COV ek in computed as a part of
the gain expression in the standard implementation
of the discrete Kalman filter. Conveniently, using
the previously stated assumptiona, the covariance
of the innovation is available for use with no
additional computational expense.

ADAPTIVE COMPUTATION OF THE
STATE-NOISE COVARIANCE

For the standard formulation of the discrete
Kalman filter, the state-noine covariance extrap-
olation atop is given by

Pk+1/k - 0Pk/k 0T + FFk	 (4a)

where FFk is the state-noise covariance and 0
is the system transition matrix. Substituting
Eq. (4a) into Eq. (3b) and rearranging given

CFFkCT COV(ok) - C(0Pk_1/k-1 0T)C GO
T
k	 (4b)

If the geometry matrix, Ck, is square and non-
singular, we can solve for the otate-noine covari-
ance matrix direotly. If the number of measure-
ments does not equal the number of states, we can
expand the matrix equation to form a not of L
scalar equations in M(M - 1) unknowns, where L is
the number of measurements and M in the number of
states. We then must assume that the off-diagonal
elements of the covariance matrix are insignifi-
cant, and the covariance matrix in essentially
diagonal. This allows us to solve directly for L
of the diagonal elements in the state-nolae covari-
ance matrix. In the case of Eq. (1), we can solve
directly for the first, second, and fourth diagonal
elemental the remaining element can be solved for
by considering that by definition

d

i

COV(ek
) a E (zk - 

Cxk/k-1)(zk - Cxk/k_1) T	(3a)

Substituting in Eq. (2a) for z gives

COV(ek) - E[C(xk - xk/k-1) + Gknk]LC(xk

- xk/k-1) + Gknk]T

Now, since the measurement noise is assumed to be
white and all biases have been previously removed,
the previous expression reduces to

COV(ok) - C+k - xk/k-1) (xk - xk/k-1)TCT + GGk

From the definition for the filter error covariance
matrix,

Pk/k-1 - E (xk - xk/%-1)(xk - xk/k-1)T

Vw - V + W	 (4c)

from which we reason that the third diagonal ele-
ment is simply the rum of the second and fourth
diagonal elements. Equation (4b) can now be imple-
mented as a part of the filter loop to give a
closed-loop estimate of the covariance of random
disturbances in the aircraft dynamite.

PRESENTATION OF ADAPTIVE TECHNIQUE

The adaptive algorithm is presented in schema-
tic form in Fig. 5. The portion of Fig. 5 that
lies outside the dashed line r.epresento the process
dynamics; the portion that lien inside the dashed
line represents the estimation loop. The arrows
depict the flow of information through the filter.
The state-noise covariance is computed by means of
Eq. 4 as a part of the recursion of the filter.

APPLICATION OF ALGORITHM TO TRAJECTORY
RECONSTRUCTION PROBLEM

r

An a verification of its validity, the adaptive
algorithm is now applied to the problem of air-data
reconstruction. Data obtained from the third apace

we got

COV(ck) - Cpk/k-1 CT + GGk	 (3b)

4
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shuttle reentry (STS-3) are chosen to illustrate
the problem. The STS-3 landing at White Banda, Now
Maxico, occurred an a worst-case day. Extremely
high winds and moderate-to-severe turbulence were
known to exist. Examination of landing-day rawin-
sonde and Jlmsphore balloon data provided by the

Air Force Flight Test Center at Edwards AFB indi-
cated that jetstream velocities were measured in

excess of 150 knots. The Jimnphare balloon was
observed to have rise-rate oscillations that varied
from 0 to 10 Wane. Thane wind conditions

extended throughout the troposphere and the lower
stratosphere. Because of these conditions, the
vertical wind component was subject to greater ran-

dom variation than has been experienced during any
of the other epato shuttle roontriea. The condi-
tions are suggestive of mountain gravity wave

activity. Analytical solutions documented in
Rof. 2 also suggest that this is the cane. Such

conditions are known to produce highly nonstatlon-
ary disturbances (Refs. 2 and 6).

The air-data reconstruction was performed

using the adaptive algorithm with arbitrary initial

covariancee assumed for the state disturbances.
The measurement error covariancee wnre chosen based

upon the prescribed methods mentioned earlier. To
verify the effectiveness of the adaptive algorithm,

the air-data reconstruction was also performed
using a standard implementation of the discrete
Kalman filter. The standard implementation was

performed using the name initial covariancee as

abovet however, in thin case both the state distur-
bance and measurement error covariancee were held
constant.

The results of the adaptive case are presented
in Fig. 6. Presented are comparisons of the

measured and reconstructed time histories of air-
speed (Fig. 6(a)), vertical windepeed (Fig. 6(b)),
:md total horizontal windepeed (Fig. (6c)). Esti-

mates of these quantities are the moat heavily
affected by time variations in random atmospheric
disturbances. Inertial type quantities such as

position and groundspeed are less heavily affected
The results show no significant discrepancies
between the measured and estimated values. Con-

sidering the fact that mountain wave activity was

believed to exist, the vertical windspeeds,
although large, are within believable limits. As
expected, the filtered estimates exhibit higher
frequencies than do the meteorological winds.

The results of the nonadaptive estimates are

presented in Fig. 7, and similar comparisons are

made. These comparisons show significant discre-
pancies. The estimates of airepood and horizontal
windepeed differ by more than 100 ft/sec. It is

not believed that the meteorological estimates
could have been this much in error. The verti-
cal wind estimate reaches a peak value of nearly

60 ft/sec downdraft. Had these conditions actually
occurred, it in doubtful that the reentering space
shuttle could have cleared the lofty San Andreae

Mountains that border the STS-3 landing site. In

Fig. 7 it is interacting to note that the behavior
of the standard filter becomes more roalis6ic
toward the and of the time histories. Those data
correspond to data that were obtained just befog.•

landing and several minutes after the shuttle had
dropped below the regions of heavy turbulence and

mountain wave activity. Under these conditions the
disturbances dropped to nearly zero and no adaptive
estimation of the covariances of the disturbances
were necessary.

CONCLUDING REMARKS

An adaptive algorithm that can be used to
estimate the state-noise covariance for certain

types of nonstationary processes has been deve-
loped. The algorithm, which wan developed pri-

marily for the purpose of air-data reconstruction,
accounts for improper knowledge of the state-

disturbance covariance matrix end, to Bome extent,

accounts for unknown measurement biases. The algo-
rithm is recursive and has the potential for real-
time implementation. Socaune the adaptation cri-

terion was formulated in a general senne, it has
applications to fields other than air-data
reconstruction.

An air-data reconstruction problem for the

space shuttle in used to demonstrate the applica-
tion of the algorithm. The algorithm exhibits

superior performance an compared with a standard

implementation of the discrete Kalman filter. The
algorithm has potential for solving many typos of

nonetationary estimation problems for which the
standard implementation of the Kalman filter in
unsuited.
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constant covariance Kalman filter. 	 The results of the reconstructions are compared,

and the adaptive algorithm exhibits better performance.
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