357 research outputs found

    Bayesian parameter estimation with prior weighting in ALT model

    Get PDF
    This paper provides an overview of the application of Bayesian inference to accelerated life testing (ALT) models for the concrete case of estimation by Maximum of Aposteriori (MAP) method in the case of constant stress levels. It studies the Bayesian inference over the accelerated life model as presented in [1]. It suites, integrates and generalizes the particular cases presented in [2] and [3]. Towards the end, weighting of the prior information according to data is integrated. The paper also illustrates an experimental example

    Eigenvalues and Singular Values of Products of Rectangular Gaussian Random Matrices

    Full text link
    We derive exact analytic expressions for the distributions of eigenvalues and singular values for the product of an arbitrary number of independent rectangular Gaussian random matrices in the limit of large matrix dimensions. We show that they both have power-law behavior at zero and determine the corresponding powers. We also propose a heuristic form of finite size corrections to these expressions which very well approximates the distributions for matrices of finite dimensions.Comment: 13 pages, 3 figure

    Topology and Phases in Fermionic Systems

    Full text link
    There can exist topological obstructions to continuously deforming a gapped Hamiltonian for free fermions into a trivial form without closing the gap. These topological obstructions are closely related to obstructions to the existence of exponentially localized Wannier functions. We show that by taking two copies of a gapped, free fermionic system with complex conjugate Hamiltonians, it is always possible to overcome these obstructions. This allows us to write the ground state in matrix product form using Grassman-valued bond variables, and show insensitivity of the ground state density matrix to boundary conditions.Comment: 4 pages, see also arxiv:0710.329

    Complete diagrammatics of the single ring theorem

    Full text link
    Using diagrammatic techniques, we provide explicit functional relations between the cumulant generating functions for the biunitarily invariant ensembles in the limit of large size of matrices. The formalism allows to map two distinct areas of free random variables: Hermitian positive definite operators and non-normal R-diagonal operators. We also rederive the Haagerup-Larsen theorem and show how its recent extension to the eigenvector correlation function appears naturally within this approach.Comment: 18 pages, 6 figures, version accepted for publicatio

    Spectral measures of small index principal graphs

    Full text link
    The principal graph XX of a subfactor with finite Jones index is one of the important algebraic invariants of the subfactor. If Δ\Delta is the adjacency matrix of XX we consider the equation Δ=U+U−1\Delta=U+U^{-1}. When XX has square norm ≀4\leq 4 the spectral measure of UU can be averaged by using the map u→u−1u\to u^{-1}, and we get a probability measure Ï”\epsilon on the unit circle which does not depend on UU. We find explicit formulae for this measure Ï”\epsilon for the principal graphs of subfactors with index ≀4\le 4, the (extended) Coxeter-Dynkin graphs of type AA, DD and EE. The moment generating function of Ï”\epsilon is closely related to Jones' Θ\Theta-series.Comment: 23 page

    Collective potential for large N hamiltonian matrix models and free Fisher information

    Full text link
    We formulate the planar `large N limit' of matrix models with a continuously infinite number of matrices directly in terms of U(N) invariant variables. Non-commutative probability theory, is found to be a good language to describe this formulation. The change of variables from matrix elements to invariants induces an extra term in the hamiltonian,which is crucual in determining the ground state. We find that this collective potential has a natural meaning in terms of non-commutative probability theory:it is the `free Fisher information' discovered by Voiculescu. This formulation allows us to find a variational principle for the classical theory described by such large N limits. We then use the variational principle to study models more complex than the one describing the quantum mechanics of a single hermitian matrix (i.e., go beyond the so called D=1 barrier). We carry out approximate variational calculations for a few models and find excellent agreement with known results where such comparisons are possible. We also discover a lower bound for the ground state by using the non-commutative analogue of the Cramer-Rao inequality.Comment: 25 pages, late

    Error analysis of free probability approximations to the density of states of disordered systems

    Full text link
    Theoretical studies of localization, anomalous diffusion and ergodicity breaking require solving the electronic structure of disordered systems. We use free probability to approximate the ensemble- averaged density of states without exact diagonalization. We present an error analysis that quantifies the accuracy using a generalized moment expansion, allowing us to distinguish between different approximations. We identify an approximation that is accurate to the eighth moment across all noise strengths, and contrast this with the perturbation theory and isotropic entanglement theory.Comment: 5 pages, 3 figures, submitted to Phys. Rev. Let

    Bayesian Parameter Estimation with Prior Weighting in ALT Model

    Get PDF
    This paper provides an overview of the application of Bayesian inference to accelerated life testing (ALT) models for the concrete case of estimation by Maximum of Aposteriori (MAP) method in the case of constant stress levels. It studies the Bayesian inference over the accelerated life model as presented in [9]. It suites, integrates and generalizes the particular cases presented in [12] and [13]. Towards the end, weighting of the prior information according to data is integrated. The paper also illustrates an experimental example

    Investigation of continuous-time quantum walk by using Krylov subspace-Lanczos algorithm

    Get PDF
    In papers\cite{js,jsa}, the amplitudes of continuous-time quantum walk on graphs possessing quantum decomposition (QD graphs) have been calculated by a new method based on spectral distribution associated to their adjacency matrix. Here in this paper, it is shown that the continuous-time quantum walk on any arbitrary graph can be investigated by spectral distribution method, simply by using Krylov subspace-Lanczos algorithm to generate orthonormal bases of Hilbert space of quantum walk isomorphic to orthogonal polynomials. Also new type of graphs possessing generalized quantum decomposition have been introduced, where this is achieved simply by relaxing some of the constrains imposed on QD graphs and it is shown that both in QD and GQD graphs, the unit vectors of strata are identical with the orthonormal basis produced by Lanczos algorithm. Moreover, it is shown that probability amplitude of observing walk at a given vertex is proportional to its coefficient in the corresponding unit vector of its stratum, and it can be written in terms of the amplitude of its stratum. Finally the capability of Lanczos-based algorithm for evaluation of walk on arbitrary graphs (GQD or non-QD types), has been tested by calculating the probability amplitudes of quantum walk on some interesting finite (infinite) graph of GQD type and finite (infinite) path graph of non-GQD type, where the asymptotic behavior of the probability amplitudes at infinite limit of number of vertices, are in agreement with those of central limit theorem of Ref.\cite{nko}.Comment: 29 pages, 4 figure

    Random matrix techniques in quantum information theory

    Get PDF
    The purpose of this review article is to present some of the latest developments using random techniques, and in particular, random matrix techniques in quantum information theory. Our review is a blend of a rather exhaustive review, combined with more detailed examples -- coming from research projects in which the authors were involved. We focus on two main topics, random quantum states and random quantum channels. We present results related to entropic quantities, entanglement of typical states, entanglement thresholds, the output set of quantum channels, and violations of the minimum output entropy of random channels
    • 

    corecore