1,982 research outputs found

    An extended solution space for Chern-Simons gravity: the slowly rotating Kerr black hole

    Full text link
    In the Einstein-Cartan formulation, an iterative procedure to find solutions in non-dynamical Chern-Simons (CS) gravity in vacuum is proposed. The iterations, in powers of a small parameter β\beta which codifies the CS coupling, start from an arbitrary torsionless solution of Einstein equations. With Schwarzschild as the zeroth-order choice, we derive a second-order differential equation for the O(β)\mathcal{O}(\beta) corrections to the metric, for an arbitrary zeroth-order embedding parameter. In particular, the slowly rotating Kerr metric is an O(β)\mathcal{O}(\beta) solution in either the canonical or the axial embeddings.Comment: 5 pages, PRD accepte

    Emergent electrodynamics from the Nambu model for spontaneous Lorentz symmetry breaking

    Get PDF
    After imposing the Gauss law constraint as an initial condition upon the Hilbert space of the Nambu model, in all its generic realizations, we recover QED in the corresponding non-linear gauge A_{\mu}A^{\mu}=n^{2}M^{2}. Our result is non-perturbative in the parameter M for n^{2}\neq 0 and can be extended to the n^{2}=0 case. This shows that in the Nambu model, spontaneous Lorentz symmetry breaking dynamically generates gauge invariance, provided the Gauss law is imposed as an initial condition. In this way electrodynamics is recovered, with the photon being realized as the Nambu-Goldstone modes of the spontaneously broken symmetry, which finally turns out to be non-observableComment: 17 page

    Highly charged ions: optical clocks and applications in fundamental physics

    Full text link
    Recent developments in frequency metrology and optical clocks have been based on electronic transitions in atoms and singly charged ions as references. These systems have enabled relative frequency uncertainties at a level of a few parts in 10−1810^{-18}. This accomplishment not only allows for extremely accurate time and frequency measurements, but also to probe our understanding of fundamental physics, such as variation of fundamental constants, violation of the local Lorentz invariance, and forces beyond the Standard Model of Physics. In addition, novel clocks are driving the development of sophisticated technical applications. Crucial for applications of clocks in fundamental physics are a high sensitivity to effects beyond the Standard Model and Einstein's Theory of Relativity and a small frequency uncertainty of the clock. Highly charged ions offer both. They have been proposed as highly accurate clocks, since they possess optical transitions which can be extremely narrow and less sensitive to external perturbations compared to current atomic clock species. The selection of highly charged ions in different charge states offers narrow transitions that are among the most sensitive ones for a change in the fine-structure constant and the electron-to-proton mass ratio, as well as other new physics effects. Recent advances in trapping and sympathetic cooling of highly charged ions will in the future enable high accuracy optical spectroscopy. Progress in calculating the properties of selected highly charged ions has allowed the evaluation of systematic shifts and the prediction of the sensitivity to the "new physics" effects. This article reviews the current status of theory and experiment in the field.Comment: 53 pages, 16 figures, submitted to RM

    NGC 2782: a merger remnant with young stars in its gaseous tidal tail

    Get PDF
    We have searched for young star-forming regions around the merger remnant NGC 2782. By using GALEX FUV and NUV imaging and HI data we found seven UV sources, located at distances greater than 26 kpc from the center of NGC 2782, and coinciding with its western HI tidal tail. These regions were resolved in several smaller systems when Gemini/GMOS r-band images were used. We compared the observed colors to stellar population synthesis models and we found that these objects have ages of ~1 to 11 Myr and masses ranging from 10^3.9 to 10^4.6 Msun. By using Gemini/GMOS spectroscopic data we confirm memberships and derive high metallicities for three of the young regions in the tail (12+log(O/H)=8.74\pm0.20, 8.81\pm0.20 and 8.78\pm0.20). These metallicities are similar to the value presented by the nuclear region of NGC 2782 and also similar to the value presented for an object located close to the main body of NGC 2782. The high metallicities measured for the star-forming regions in the gaseous tidal tail of NGC 2782 could be explained if they were formed out of highly enriched gas which was once expelled from the center of the merging galaxies when the system collided. An additional possibility is that the tail has been a nursery of a few generations of young stellar systems which ultimately polluted this medium with metals, further enriching the already pre-enriched gas ejected to the tail when the galaxies collided.Comment: 11 pages, 5 figures. Accepted for publication in MNRA

    Department of Food and Agriculture

    Get PDF

    UNSUPERVISED LEARNING FOR RIPENESS ESTIMATION FROM GRAPE SEEDS IMAGES

    Get PDF
    Estimating the current stage of grape ripeness is a crucial step in wine making and becomes especially important during harvesting. Visual inspection of grape seeds is one method to achieve this goal without performing chemical analysis, however this method is prone to failure. In this paper, we propose an unsupervised visual inspection system for grape ripeness estimation using the Dirichlet Mixture Model (DMM). Experimental analysis using real world data demonstrates that our approach can be used to estimate different ripeness stages from unlabeled grape seeds catalogs

    Department of Food and Agriculture

    Get PDF

    Two hard spheres in a pore: Exact Statistical Mechanics for different shaped cavities

    Get PDF
    The Partition function of two Hard Spheres in a Hard Wall Pore is studied appealing to a graph representation. The exact evaluation of the canonical partition function, and the one-body distribution function, in three different shaped pores are achieved. The analyzed simple geometries are the cuboidal, cylindrical and ellipsoidal cavities. Results have been compared with two previously studied geometries, the spherical pore and the spherical pore with a hard core. The search of common features in the analytic structure of the partition functions in terms of their length parameters and their volumes, surface area, edges length and curvatures is addressed too. A general framework for the exact thermodynamic analysis of systems with few and many particles in terms of a set of thermodynamic measures is discussed. We found that an exact thermodynamic description is feasible based in the adoption of an adequate set of measures and the search of the free energy dependence on the adopted measure set. A relation similar to the Laplace equation for the fluid-vapor interface is obtained which express the equilibrium between magnitudes that in extended systems are intensive variables. This exact description is applied to study the thermodynamic behavior of the two Hard Spheres in a Hard Wall Pore for the analyzed different geometries. We obtain analytically the external work, the pressure on the wall, the pressure in the homogeneous zone, the wall-fluid surface tension, the line tension and other similar properties

    Probing the AGN Unification Model at redshift z ∼\sim 3 with MUSE observations of giant Lyα\alpha nebulae

    Full text link
    A prediction of the classic active galactic nuclei (AGN) unification model is the presence of ionisation cones with different orientations depending on the AGN type. Confirmations of this model exist for present times, but it is less clear in the early Universe. Here, we use the morphology of giant Lyα\alpha nebulae around AGNs at redshift z∼\sim3 to probe AGN emission and therefore the validity of the AGN unification model at this redshift. We compare the spatial morphology of 19 nebulae previously found around type I AGNs with a new sample of 4 Lyα\alpha nebulae detected around type II AGNs. Using two independent techniques, we find that nebulae around type II AGNs are more asymmetric than around type I, at least at radial distances r>30r>30~physical kpc (pkpc) from the ionizing source. We conclude that the type I and type II AGNs in our sample show evidence of different surrounding ionising geometries. This suggests that the classical AGN unification model is also valid for high-redshift sources. Finally, we discuss how the lack of asymmetry in the inner parts (r≲\lesssim30 pkpc) and the associated high values of the HeII to Lyα\alpha ratios in these regions could indicate additional sources of (hard) ionizing radiation originating within or in proximity of the AGN host galaxies. This work demonstrates that the morphologies of giant Lyα\alpha nebulae can be used to understand and study the geometry of high redshift AGNs on circum-nuclear scales and it lays the foundation for future studies using much larger statistical samples.Comment: 15 pages, 13 figures, accepted for publication in MNRA

    Star formation in low density HI gas around the Elliptical Galaxy NGC2865

    Full text link
    Interacting galaxies surrounded by HI tidal debris are ideal sites for the study of young clusters and tidal galaxy formation. The process that triggers star formation in the low-density environments outside galaxies is still an open question. New clusters and galaxies of tidal origin are expected to have high metallicities for their luminosities. Spectroscopy of such objects is, however, at the limit of what can be done with existing 8-10m class telescopes, which has prevented statistical studies of these objects. NGC2865 is an UV-bright merging elliptical galaxy with shells and extended HI tails. The regions observed in this work were previously detected using multi-slit imaging spectroscopy. We obtain new multislit spectroscopy of six young star-forming regions around NGC2865, to determine their redshifts and metallicities. The six emission-line regions are located 16-40 kpc from NGC2865 and they have similar redshifts. They have ages of ~10Myears and an average metallicity of 12+log(O/H) ~ 8.6, suggesting a tidal origin for the regions. It is noted that they coincide with an extended HI tail, which has projected density of NHI_{HI} < 1019^{19} cm−2^{-2}, and displays a low surface brightness counterpart. These regions may represent the youngest of the three populations of star clusters already identified in NGC2865. The high, nearly-solar, oxygen abundances found for the six regions in the vicinity of NGC2865 suggest that they were formed by pre-enriched material from the parent galaxy, from gas removed during the last major merger. Given the mass and the location of the HII regions, we can speculate that these young star-forming regions are potential precursors of globular clusters that will be part of the halo of NGC2865 in the future. Our result supports the use of the multi-slit imaging spectroscopy as a useful tool for finding nearly-formed stellar systems around galaxies.Comment: 7 pages, 2 figures accepted in A&
    • …
    corecore