688 research outputs found

    A comparative study of deconvolution techniques for quantum-gas microscope images

    Full text link
    Quantum-gas microscopes are used to study ultracold atoms in optical lattices at the single particle level. In these system atoms are localised on lattice sites with separations close to or below the diffraction limit. To determine the lattice occupation with high fidelity, a deconvolution of the images is often required. We compare three different techniques, a local iterative deconvolution algorithm, Wiener deconvolution and the Lucy-Richardson algorithm, using simulated microscope images. We investigate how the reconstruction fidelity scales with varying signal-to-noise ratio, lattice filling fraction, varying fluorescence levels per atom, and imaging resolution. The results of this study identify the limits of singe-atom detection and provide quantitative fidelities which are applicable for different atomic species and quantum-gas microscope setups

    Precise Experimental Investigation of Eigenmodes in a Planar Ion Crystal

    Full text link
    The accurate characterization of eigenmodes and eigenfrequencies of two-dimensional ion crystals provides the foundation for the use of such structures for quantum simulation purposes. We present a combined experimental and theoretical study of two-dimensional ion crystals. We demonstrate that standard pseudopotential theory accurately predicts the positions of the ions and the location of structural transitions between different crystal configurations. However, pseudopotential theory is insufficient to determine eigenfrequencies of the two-dimensional ion crystals accurately but shows significant deviations from the experimental data obtained from resolved sideband spectroscopy. Agreement at the level of 2.5 x 10^(-3) is found with the full time-dependent Coulomb theory using the Floquet-Lyapunov approach and the effect is understood from the dynamics of two-dimensional ion crystals in the Paul trap. The results represent initial steps towards an exploitation of these structures for quantum simulation schemes.Comment: 5 pages, 4 figures, supplemental material (mathematica and matlab files) available upon reques

    Characterising a Si(Li) detector element for the SIXA X-ray spectrometer

    Get PDF
    The detection efficiency and response function of a Si(Li) detector element for the SIXA spectrometer have been determined in the 500 eV to 5 keV energy range using synchrotron radiation emitted at a bending magnet of the electron storage ring BESSY, which is a primary radiation standard. The agreement between the measured spectrum and the model calculation is better than 2%. PACS: 95.55.Ka; 07.85.Nc; 29.40.Wk; 85.30.De Keywords: Si(Li) detectors, X-ray spectrometers, detector calibration, X-ray response, spectral lineshapeComment: 11 pages, 11 PostScript figures, uses elsart.sty, submitted to Nucl. Instrum. Meth.

    Feedback-Optimized Operations with Linear Ion Crystals

    Full text link
    We report on transport operations with linear crystals of 40Ca+ ions by applying complex electric time-dependent potentials. For their control we use the information obtained from the ions' fluorescence. We demonstrate that by means of this feedback technique, we can transport a predefined number of ions and also split and unify ion crystals. The feedback control allows for a robust scheme, compensating for experimental errors as it does not rely on a precisely known electrical modeling of the electric potentials in the ion trap beforehand. Our method allows us to generate a self-learning voltage ramp for the required process. With an experimental demonstration of a transport with more than 99.8 % success probability, this technique may facilitate the operation of a future ion based quantum processor

    Direct radiocarbon dating of fish otoliths from mulloway (Argyrosomus japonicus) and black bream (Acanthopagrus butcheri) from Long Point, Coorong, South Australia

    Get PDF
    Accelerator Mass Spectrometry (AMS) radiocarbon dates (n=20) determined on fish otoliths from mulloway (Argyrosomus japonicus) and black bream (Acanthopagrus butcheri) are reported from five sites at Long Point, Coorong, South Australia. The dates range from 2938–2529 to 326–1 cal. BP, extending the known period of occupation of Long Point. Previous dating at the sites indicated intensive occupation of the area from 2455–2134 cal. BP. Results provide a detailed local chronology for the region, contributing to a more comprehensive understanding of Aboriginal use of Ngarrindjeri lands and waters. This study validates the use of fish otoliths for radiocarbon dating and reveals how dating different materials can result in different midden chronologies

    Experimental Study of the Inductance of Pinned Vortices in Superconducting YBa2Cu3O7-d Films

    Full text link
    Using a two-coil mutual inductance method, we have measured the complex resistivity, rho_v(T,Be), of pinned vortices in c-axis pulsed laser deposited YBa2Cu3O7-d films with magnetic field Be applied perpendicular to the film. At low frequencies, (<100 kHz), rho_v is inductive and is inversely proportional to the Labusch parameter, the average vortex pinning force constant, kappa_exp. The observed weakening of kappa_exp with Be is consistent with a simple model based on linear pinning defects. Adding classical thermal fluctuations to the model in a simple way describes the observed linear T dependence of rho_v, below ~15 K and provides reasonable values for the effective radius (.3 nm to >.8 nm) of the defects and the depth of the pinning potential. The success of this model implies that thermal supercurrent (phase) fluctuations have their full classical amplitude down to 5 K for frequencies below the characteristic depinning frequency. To date, no sufficient theory exists to explain the data between ~15 K and the vortex glass melting temperature.Comment: 31 pages, 8 figures. Subm. to PR

    Creep in reactive colloidal gels: A nanomechanical study of cement hydrates

    Get PDF
    From soft polymeric gels to hardened cement paste, amorphous solids under constant load exhibit a pronounced time-dependent deformation called creep. The microscopic mechanism of such a phenomenon is poorly understood in amorphous materials and constitutes an even greater challenge in densely packed and chemically reactive granular systems. Both features are prominently present in hydrating cement pastes composed of calcium silicate hydrate (C-S-H) nanoparticles, whose packing density increases as a function of time, while cement hydration is taking place. Performing nanoindentation tests and porosity measurements on a large collection of samples at various stages of hydration, we show that the creep response of hydrating cement paste is mainly controlled by the interparticle distance and results from slippage between (C-S-H) nanoparticles. Our findings provide a unique insight into the microscopic mechanism underpinning the creep response in aging granular materials, thus paving the way for the design of concrete with improved creep resistance

    An incredible journey: the first people to arrive in Australia came in large numbers, and on purpose

    Get PDF
    The size of the first population of people needed to arrive, survive, and thrive in what is now Australia is revealed in two studies published today. It took more than 1,000 people to form a viable population. But this was no accidental migration, as our work shows the first arrivals must have been planned. Our data suggest the ancestors of the Aboriginal, Torres Strait Islander, and Melanesian peoples first made it to Australia as part of an organised, technologically advanced migration to start a new life

    Redating the earliest evidence of the mid-Holocene relative sea-level highstand in Australia and implications for global sea-level rise.

    Full text link
    Reconstructing past sea levels can help constrain uncertainties surrounding the rate of change, magnitude, and impacts of the projected increase through the 21st century. Of significance is the mid-Holocene relative sea-level highstand in tectonically stable and remote (far-field) locations from major ice sheets. The east coast of Australia provides an excellent arena in which to investigate changes in relative sea level during the Holocene. Considerable debate surrounds both the peak level and timing of the east coast highstand. The southeast Australian site of Bulli Beach provides the earliest evidence for the establishment of a highstand in the Southern Hemisphere, although questions have been raised about the pretreatment and type of material that was radiocarbon dated for the development of the regional sea-level curve. Here we undertake a detailed morpho- and chronostratigraphic study at Bulli Beach to better constrain the timing of the Holocene highstand in eastern Australia. In contrast to wood and charcoal samples that may provide anomalously old ages, probably due to inbuilt age, we find that short-lived terrestrial plant macrofossils provide a robust chronological framework. Bayesian modelling of the ages provide improved dating of the earliest evidence for a highstand at 6,880±50 cal BP, approximately a millennium later than previously reported. Our results from Bulli now closely align with other sea-level reconstructions along the east coast of Australia, and provide evidence for a synchronous relative sea-level highstand that extends from the Gulf of Carpentaria to Tasmania. Our refined age appears to be coincident with major ice mass loss from Northern Hemisphere and Antarctic ice sheets, supporting previous studies that suggest these may have played a role in the relative sea-level highstand. Further work is now needed to investigate the environmental impacts of regional sea levels, and refine the timing of the subsequent sea-level fall in the Holocene and its influence on coastal evolution
    • …
    corecore