851 research outputs found
Pupil responses associated with coloured afterimages are mediated by the magno-cellular pathway
Sustained fixation of a bright coloured stimulus will, on extinction of the stimulus and continued steady fixation, induce an afterimage whose colour is complementary to that of the initial stimulus; an effect thought to be caused by fatigue of cones and/or of cone-opponent processes to different colours. However, to date, very little is known about the specific pathway that causes the coloured afterimage. Using isoluminant coloured stimuli recent studies have shown that pupil constriction is induced by onset and offset of the stimulus, the latter being attributed specifically to the subsequent emergence of the coloured afterimage. The aim of the study was to investigate how the offset pupillary constriction is generated in terms of input signals from discrete functional elements of the magno- and/or parvo-cellular pathways, which are known principally to convey, respectively, luminance and colour signals. Changes in pupil size were monitored continuously by digital analysis of an infra-red image of the pupil while observers viewed isoluminant green pulsed, ramped or luminance masked stimuli presented on a computer monitor. It was found that the amplitude of the offset pupillary constriction decreases when a pulsed stimulus is replaced by a temporally ramped stimulus and is eliminated by a luminance mask. These findings indicate for the first time that pupillary constriction associated with a coloured afterimage is mediated by the magno-cellular pathway. © 2003 Elsevier Science Ltd. All rights reserved
Clinical evaluation of the Shin-Nippon SRW-5000 autorefractor in adults:an update
Purpose: The Shin-Nippon SRW-5000 is an open view autorefractor that superseded the Canon R-1 autorefractor in the mid-1990s and has been used widely in optometry and vision science laboratories. It has been used to measure refractive error, accommodation responses both statically and dynamically, off-axis refractive error, and adapted to measure pupil size. This paper presents an overview of the original 2001 clinical evaluation of the SRW-5000 in adults (Mallen et al., Ophthal Physiol Opt 2001; 21: 101) and provides an update on the use and modification of the instrument since the original publication. Recent findings: The SRW-5000 instrument, and the family of devices which followed, have shown excellent validity, repeatability, and utility in clinical and research settings. The instruments have also shown great potential for increased research functionality following a number of modifications. Summary: The SRW-5000 and its derivatives have been, and continue to be, of significant importance in our drive to understand myopia progression, myopia control techniques, and oculomotor function in human vision
Detection of a novel locus involved in non-seed-shattering behaviour of Japonica rice cultivar, Oryzasativa ‘Nipponbare’
Asian cultivated rice, Oryzasativa, was domesticated from its wild ancestor, O.rufipogon. Loss of seed shattering is one of the most recognisable traits selected during rice domestication. Three quantitative trait loci (QTLs), qSH1, qSH3, and sh4, were previously reported to be involved in the loss of seed shattering of Japonica cultivated rice, O.sativa ‘Nipponbare’. However, the introgression line (IL) carrying ‘Nipponbare’ alleles at these three loci in the genetic background of wild rice, O.rufipogon W630, showed a lower value for detaching a grain from the pedicel than ‘Nipponbare’. Here, we investigated abscission layer formation in the IL and found a partially formed abscission layer in the central region between the epidermis and vascular bundles. Based on QTL-seq analysis using the F2 population obtained from a cross between ‘Nipponbare’ and the IL, we detected two novel loci qCSS3 and qCSS9 (QTL for the Control of Seed Shattering in rice on chromosomes 3 and 9), which were found to be involved in the difference in seed-shattering degree between ‘Nipponbare’ and W630. Then, we further focused on qCSS3 in order to understand its potential role on the loss of seed shattering. The candidate region of qCSS3 was found to be located within a 526-kb region using substitution mapping analysis. Interestingly, the qCSS3 candidate region partially overlaps the selective sweep detected for Japonica but not for Indica rice cultivars, suggesting that this region harbours the mutation at a novel seed-shattering locus specifically selected for non-seed-shattering behaviour in Japonica cultivars
Chapter I: Overview
The Rangelands Atmosphere-hydrosphere-biosphere Interaction Study Experiment in northeastern Asia (RAISE) ......7
Safety of Postoperative Administration of Human Urinary Trypsin Inhibitor in Lung Cancer Patients with Idiopathic Pulmonary Fibrosis
Patients with idiopathic pulmonary fibrosis (IPF) undergoing pulmonary resection for lung cancer carry risks of acute exacerbations of IPF (AE) postoperatively. Currently, agents which may attenuate AE are actively sought. Urinary trypsin inhibitor, ulinastatin, is a synthetic glycoprotein which may potentially inhibit various inflammatory factors associated with the development and progression of IPF. The present study was done to evaluate the effects of administration of high dose ulinastatin in lung cancer patients with IPF immediately following lung resection.Patients with IPFs radiologically diagnosed on high resolution CT, and histologically diagnosed resectable lung cancers, were eligible for the study. The effects of escalating doses of ulinastatin 3×10(5), 6×10(5), and 9×10(5) units/body/day, administered postoperatively for 3 days were evaluated. The endpoints were safety and feasibility.Nine patients were evaluated, in cohorts of 3 patients per dosage. Postoperative follow up ranged from 3 to 12 months (median 9 months). The postoperative courses were uneventful in all patients. No subjective adverse events such as abdominal symptoms or skin rashes, or objective adverse events as per serum laboratory tests, such as liver or kidney dysfunctions potentially attributable to ulinastatin administration were observed. AE was seen in one patient at 3 months after surgery, but since this occurred shortly after administration of chemotherapy, it was considered to be attributable to the chemotherapy rather than surgery.Ulinastatin administration after lung resection in lung cancer patients with IPF was considered to be safe and feasible. Further study is planned at the highest dose of this study to evaluate efficacy.UMIN.ac.jp/ctr/UMIN000002410
Shared and Distinct Functions of the Transcription Factors IRF4 and IRF8 in Myeloid Cell Development
Interferon regulatory factor (IRF) 8 and IRF4 are structurally-related, hematopoietic cell-specific transcription factors that cooperatively regulate the differentiation of dendritic cells and B cells. Whilst in myeloid cells IRF8 is known to modulate growth and differentiation, the role of IRF4 is poorly understood. In this study, we show that IRF4 has activities similar to IRF8 in regulating myeloid cell development. The ectopic expression of IRF4 in myeloid progenitor cells in vitro inhibits cell growth, promotes macrophages, but hinders granulocytic cell differentiation. We also show that IRF4 binds to and activates transcription through the IRF-Ets composite sequence (IECS). Furthermore, we demonstrate that Irf8-/-Irf4-/- mice exhibit a more severe chronic myeloid leukemia (CML)-like disease than Irf8-/- mice, involving a disproportionate expansion of granulocytes at the expense of monocytes/macrophages. Irf4-/- mice, however, display no obvious abnormality in myeloid cell development, presumably because IRF4 is expressed at a much lower level than IRF8 in granulocyte-macrophage progenitors. Our results also suggest that IRF8 and IRF4 have not only common but also specific activities in myeloid cells. Since the expression of both the IRF8 and IRF4 genes is downregulated in CML patients, these results may add to our understanding of CML pathogenesis
Functionally Stable and Phylogenetically Diverse Microbial Enrichments from Microbial Fuel Cells during Wastewater Treatment
Microbial fuel cells (MFCs) are devices that exploit microorganisms as biocatalysts to recover energy from organic matter in the form of electricity. One of the goals of MFC research is to develop the technology for cost-effective wastewater treatment. However, before practical MFC applications are implemented it is important to gain fundamental knowledge about long-term system performance, reproducibility, and the formation and maintenance of functionally-stable microbial communities. Here we report findings from a MFC operated for over 300 days using only primary clarifier effluent collected from a municipal wastewater treatment plant as the microbial resource and substrate. The system was operated in a repeat-batch mode, where the reactor solution was replaced once every two weeks with new primary effluent that consisted of different microbial and chemical compositions with every batch exchange. The turbidity of the primary clarifier effluent solution notably decreased, and 97% of biological oxygen demand (BOD) was removed after an 8–13 day residence time for each batch cycle. On average, the limiting current density was 1000 mA/m2, the maximum power density was 13 mW/m2, and coulombic efficiency was 25%. Interestingly, the electrochemical performance and BOD removal rates were very reproducible throughout MFC operation regardless of the sample variability associated with each wastewater exchange. While MFC performance was very reproducible, the phylogenetic analyses of anode-associated electricity-generating biofilms showed that the microbial populations temporally fluctuated and maintained a high biodiversity throughout the year-long experiment. These results suggest that MFC communities are both self-selecting and self-optimizing, thereby able to develop and maintain functional stability regardless of fluctuations in carbon source(s) and regular introduction of microbial competitors. These results contribute significantly toward the practical application of MFC systems for long-term wastewater treatment as well as demonstrating MFC technology as a useful device to enrich for functionally stable microbial populations
Modelling the sulfate capacity of simulated radioactive waste borosilicate glasses
The capacity of simulated high-level radioactive waste borosilicate glasses to incorporate sulfate has been studied as a function of glass composition. Combined Raman, 57Fe Mössbauer and literature evidence supports the attribution of coordination numbers and oxidation states of constituent cations for the purposes of modelling, and results confirm the validity of correlating sulfate incorporation in multicomponent borosilicate radioactive waste glasses with different models. A strong compositional dependency is observed and this can be described by an inverse linear relationship between incorporated sulfate (mol% SO42−) and total cation field strength index of the glass, Σ(z/a2), with a high goodness-of-fit (R2 ≈ 0.950). Similar relationships are also obtained if theoretical optical basicity, Λth (R2 ≈ 0.930) or non-bridging oxygen per tetrahedron ratio, NBO/T (R2 ≈ 0.919), are used. Results support the application of these models, and in particular Σ(z/a2), as predictive tools to aid the development of new glass compositions with enhanced sulfate capacities
- …