316 research outputs found

    Using an in-vitro biofilm model to assess the virulence potential of Bacterial Vaginosis or non-Bacterial Vaginosis Gardnerella vaginalis isolates

    Get PDF
    Gardnerella vaginalis is the most common species found in bacterial vaginosis (BV). However, it is also present in a significant proportion of healthy women and G. vaginalis vaginal colonization does not always lead to BV. In an effort to better understand the differences between G. vaginalis isolated from women with a positive (BV) versus a negative (non-BV) diagnosis of BV, we compared the virulence potential of 7 BV and 7 non-BV G. vaginalis isolates and assessed the virulence factors related to biofilm formation, namely: initial adhesion and cytotoxic effect, biofilm accumulation, susceptibility to antibiotics, and transcript levels of the known vaginolysin, and sialidase genes. Furthermore, we also determined the ability of G. vaginalis to displace lactobacilli previously adhered to HeLa cells. Our results showed that non-BV strains were less virulent than BV strains, as suggested by the lower cytotoxicity and initial adhesion to Hela cells. Significant differences in expression of known virulence genes were also detected, further suggesting a higher virulence potential of the BV associated G. vaginalis. Importantly, we demonstrated that BV associated G. vaginalis were able to displace pre-coated vaginal protective lactobacilli and we hypothesize this to be a trigger for BV development.European Union funds (FEDER/COMPETE) and by national funds (FCT) under the project with reference FCOMP-01-0124-FEDER-008991 (PTDC/BIA-MIC/098228/2008). FCT Strategic Project of UID/BIO/04469/2013 unit the project NORTE-07-0124-FEDER-000027, co-funded by the Programa Operacional Regional do Norte(ON.2 – O Novo Norte), QREN, FEDER, and the project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462). FCT individual fellowship SFRH/BD/93963/2013

    Engineered Phage Endolysin Eliminates Gardnerella Biofilm without Damaging Beneficial Bacteria in Bacterial Vaginosis Ex Vivo.

    Get PDF
    Bacterial vaginosis is characterized by an imbalance of the vaginal microbiome and a characteristic biofilm formed on the vaginal epithelium, which is initiated and dominated by Gardnerella bacteria, and is frequently refractory to antibiotic treatment. We investigated endolysins of the type 1,4-beta-N-acetylmuramidase encoded on Gardnerella prophages as an alternative treatment. When recombinantly expressed, these proteins demonstrated strong bactericidal activity against four different Gardnerella species. By domain shuffling, we generated several engineered endolysins with 10-fold higher bactericidal activity than any wild-type enzyme. When tested against a panel of 20 Gardnerella strains, the most active endolysin, called PM-477, showed minimum inhibitory concentrations of 0.13-8 µg/mL. PM-477 had no effect on beneficial lactobacilli or other species of vaginal bacteria. Furthermore, the efficacy of PM-477 was tested by fluorescence in situ hybridization on vaginal samples of fifteen patients with either first time or recurring bacterial vaginosis. In thirteen cases, PM-477 killed the Gardnerella bacteria and physically dissolved the biofilms without affecting the remaining vaginal microbiome. The high selectivity and effectiveness in eliminating Gardnerella, both in cultures of isolated strains as well as in clinically derived samples of natural polymicrobial biofilms, makes PM-477 a promising alternative to antibiotics for the treatment of bacterial vaginosis, especially in patients with frequent recurrence

    Brucellosis in a refugee who migrated from Syria to Germany and lessons learnt, 2016

    Get PDF
    A teenage woman migrating from Syria arrived in May 2015 in Germany. She gave birth to a healthy child in early 2016, but became febrile shortly after delivery. Blood cultures revealed Brucella melitensis. In retrospect, she reported contact with sheep in Syria and recurrent pain in the hip joints over about five months before diagnosis of brucellosis. We discuss consequences for adequate treatment of mother and child as well as for clinical and laboratory management

    Bacterial vaginosis

    Get PDF
    Bacterial vaginosis is the most prevalent cause of abnormal vaginal discharge in women of childbearing age. It can have a major impact on quality of life and psychological wellbeing if frequently recurrent and strongly symptomatic. The use of molecular techniques to study the vaginal microbiome is increasing our understanding of the dynamic changes in flora that occur in health and disease. It might soon be possible to separate Gardnerella into different pathogenic and non-pathogenic species. Many groups are studying compounds that can disrupt the biofilm which is dominated by Gardnerella and Atopobium vaginae. Several studies in the last decade support the concept of bacterial vaginosis as a sexually transmitted infection

    Intestinal Microbiota Shifts towards Elevated Commensal Escherichia coli Loads Abrogate Colonization Resistance against Campylobacter jejuni in Mice

    Get PDF
    Background: The zoonotic pathogen Campylobacter jejuni is a leading cause of bacterial foodborne enterocolitis in humans worldwide. The understanding of immunopathology underlying human campylobacteriosis is hampered by the fact that mice display strong colonization resistance against the pathogen due to their host specific gut microbiota composition. Methodology/Principal Findings: Since the microbiota composition changes significantly during intestinal inflammation we dissected factors contributing to colonization resistance against C. jejuni in murine ileitis, colitis and in infant mice. In contrast to healthy animals C. jejuni could stably colonize mice suffering from intestinal inflammation. Strikingly, in mice with Toxoplasma gondii-induced acute ileitis, C. jejuni disseminated to mesenteric lymphnodes, spleen, liver, kidney, and blood. In infant mice C. jejuni infection induced enterocolitis. Mice suffering from intestinal inflammation and C. jejuni susceptible infant mice displayed characteristical microbiota shifts dominated by increased numbers of commensal Escherichia coli. To further dissect the pivotal role of those distinct microbiota shifts in abrogating colonization resistance, we investigated C. jejuni infection in healthy adult mice in which the microbiota was artificially modified by feeding live commensal E. coli. Strikingly, in animals harboring supra-physiological intestinal E. coli loads, colonization resistance was significantly diminished and C. jejuni infection induced enterocolitis mimicking key features of human campylobacteriosis. Conclusion/Significance: Murine colonization resistance against C. jejuni is abrogated by changes in the microbiot

    Bacterial Vaginosis (BV) Candidate Bacteria: Associations with BV and Behavioural Practices in Sexually-Experienced and Inexperienced Women

    Get PDF
    BACKGROUND: In recent years several new fastidious bacteria have been identified that display a high specificity for BV; however no previous studies have comprehensively assessed the behavioural risk associations of these bacterial vaginosis-candidate organisms (BV-COs). METHODS: We examined the associations between 8 key previously described BV-COs and BV status established by Nugent's score (NS). We also examined the sexual practices associated with each BV-CO. We incorporated 2 study populations: 193 from a sexually-inexperienced university population and 146 from a highly sexually-active clinic population. Detailed behavioural data was collected by questionnaire and vaginal smears were scored by the Nugent method. Stored samples were tested by quantitative PCR assays for the 8 BV-COs: Atopobium vaginae, Gardnerella vaginalis, Leptotrichia spp., Megasphaera type I, Sneathia spp., and the Clostridia-like bacteria BVAB1, BVAB2 and BVAB3. Associations between BV-COs and BV and behaviours were examined by univariate and multivariable analyses. RESULTS: On univariate analysis, all BV-COs were more common in BV compared to normal flora. However, only Megasphaera type I, BVAB2, A. vaginae and G. vaginalis were significantly independently associated with BV by multivariable analysis. Six of the eight BV-COs (Megasphaera type I, BVAB2, BVAB3, Sneathia, Leptotrichia and G. vaginalis) were rare or absent in sexually-unexposed women, and demonstrated increasing odds of detection with increasing levels of sexual activity and/or numbers of lifetime sexual partners. Only G. vaginalis and A. vaginae were commonly detected in sexually-unexposed women. Megasphaera type I was independently associated with women-who-have-sex-with women (WSW) and lifetime sexual partner numbers, while unprotected penile-vaginal-sex was associated with BVAB2 detection by multivariate analysis. CONCLUSIONS: Four of eight key BV-COs were significantly associated with BV after adjusting for the presence of other BV-COs. The majority of BV-COs were absent or rare in sexually-unexposed women, and associated with increasing sexual exposure, suggesting potential sexual transmission of BV-COs

    Intestinal, extra-intestinal and systemic sequelae of Toxoplasma gondii induced acute ileitis in mice harboring a human gut microbiota

    Get PDF
    Background Within seven days following peroral high dose infection with Toxoplasma gondii susceptible conventionally colonized mice develop acute ileitis due to an underlying T helper cell (Th) -1 type immunopathology. We here addressed whether mice harboring a human intestinal microbiota developed intestinal, extra-intestinal and systemic sequelae upon ileitis induction. Methodology/Principal findings Secondary abiotic mice were generated by broad- spectrum antibiotic treatment and associated with a complex human intestinal microbiota following peroral fecal microbiota transplantation. Within three weeks the human microbiota had stably established in the murine intestinal tract as assessed by quantitative cultural and culture-independent (i.e. molecular 16S rRNA based) methods. At day 7 post infection (p.i.) with 50 cysts of T. gondii strain ME49 by gavage human microbiota associated (hma) mice displayed severe clinical, macroscopic and microscopic sequelae indicating acute ileitis. In diseased hma mice increased numbers of innate and adaptive immune cells within the ileal mucosa and lamina propria and elevated intestinal secretion of pro-inflammatory mediators including IFN-γ, IL-12 and nitric oxide could be observed at day 7 p.i. Ileitis development was accompanied by substantial shifts in intestinal microbiota composition of hma mice characterized by elevated total bacterial loads and increased numbers of intestinal Gram-negative commensals such as enterobacteria and Bacteroides / Prevotella species overgrowing the small and large intestinal lumen. Furthermore, viable bacteria translocated from the inflamed ileum to extra- intestinal including systemic compartments. Notably, pro-inflammatory immune responses were not restricted to the intestinal tract as indicated by increased pro-inflammatory cytokine secretion in extra-intestinal (i.e. liver and kidney) and systemic compartments including spleen and serum. Conclusion/Significance With respect to the intestinal microbiota composition “humanized” mice display acute ileitis following peroral high dose T. gondii infection. Thus, hma mice constitute a suitable model to further dissect the interactions between pathogens, human microbiota and vertebrate host immunity during acute intestinal inflammation

    Adhesion Forces and Coaggregation between Vaginal Staphylococci and Lactobacilli

    Get PDF
    Urogenital infections are the most common ailments afflicting women. They are treated with dated antimicrobials whose efficacy is diminishing. The process of infection involves pathogen adhesion and displacement of indigenous Lactobacillus crispatus and Lactobacillus jensenii. An alternative therapeutic approach to antimicrobial therapy is to reestablish lactobacilli in this microbiome through probiotic administration. We hypothesized that lactobacilli displaying strong adhesion forces with pathogens would facilitate coaggregation between the two strains, ultimately explaining the elimination of pathogens seen in vivo. Using atomic force microscopy, we found that adhesion forces between lactobacilli and three virulent toxic shock syndrome toxin 1-producing Staphylococcus aureus strains, were significantly stronger (2.2–6.4 nN) than between staphylococcal pairs (2.2–3.4 nN), especially for the probiotic Lactobacillus reuteri RC-14 (4.0–6.4 nN) after 120 s of bond-strengthening. Moreover, stronger adhesion forces resulted in significantly larger coaggregates. Adhesion between the bacteria occurred instantly upon contact and matured within one to two minutes, demonstrating the potential for rapid anti-pathogen effects using a probiotic. Coaggregation is one of the recognized mechanisms through which lactobacilli can exert their probiotic effects to create a hostile micro-environment around a pathogen. With antimicrobial options fading, it therewith becomes increasingly important to identify lactobacilli that bind strongly with pathogens

    Generation of recombinant single-chain antibodies neutralizing the cytolytic activity of vaginolysin, the main virulence factor of Gardnerella vaginalis

    Get PDF
    Generated scFvs is the first example of recombinant single-chain antibodies with VLY-neutralizing activity produced in prokaryote expression system. G. vaginalis caused infections continue to be a world-wide problem, therefore neutralizing recombinant antibodies may provide novel therapeutic agents useful in the treatment of bacterial vaginosis and other diseases caused by G. vaginalis
    corecore