55 research outputs found

    A method for spatial deconvolution of spectra

    Get PDF
    A method for spatial deconvolution of spectra is presented. It follows the same fundamental principles as the ``MCS image deconvolution algorithm'' (Magain, Courbin, Sohy, 1998) and uses information contained in the spectrum of a reference Point Spread Function (PSF) to spatially deconvolve spectra of very blended sources. An improved resolution rather than an infinite one is aimed at, overcoming the well known problem of ``deconvolution artefacts''. As in the MCS algorithm, the data are decomposed into a sum of analytical point sources and a numerically deconvolved background, so that the spectrum of extended sources in the immediate vicinity of bright point sources may be accurately extracted and sharpened. The algorithm has been tested on simulated data including seeing variation as a function of wavelength and atmospheric refraction. It is shown that the spectra of severely blended point sources can be resolved while fully preserving the spectrophotometric properties of the data. Extended objects ``hidden'' by bright point sources (up to 4-5 magnitudes brighter) can be accurately recovered as well, provided the data have a sufficiently high total signal-to-noise ratio (200-300 per spectral resolution element). Such spectra are relatively easy to obtain, even down to faint magnitudes, within a few hours of integration time with 10m class telescopes.Comment: 18 pages, 6 postscript figures, in press in Ap

    A deconvolution-based algorithm for crowded field photometry with unknown Point Spread Function

    Get PDF
    A new method is presented for determining the Point Spread Function (PSF) of images that lack bright and isolated stars. It is based on the same principles as the MCS (Magain, Courbin, Sohy, 1998) image deconvolution algorithm. It uses the information contained in all stellar images to achieve the double task of reconstructing the PSFs for single or multiple exposures of the same field and to extract the photometry of all point sources in the field of view. The use of the full information available allows to construct an accurate PSF. The possibility to simultaneously consider several exposures makes it very well suited to the measurement of the light curves of blended point sources from data that would be very difficult or even impossible to analyse with traditional PSF fitting techniques. The potential of the method for the analysis of ground-based and space-based data is tested on artificial images and illustrated by several examples, including HST/NICMOS images of a lensed quasar and VLT/ISAAC images of a faint blended Mira star in the halo of the giant elliptical galaxy NGC5128 (Cen A).Comment: Institutes: (1) Institut d'Astrophysique et de Geophysique, Universite de Liege, allee du 6 Aout 17, B-4000 Liege, Belgium; (2) Ecole Polytechnique Federale de Lausanne (EPFL), Laboratoire d'Astrophysique, Observatoire, CH-1290 Sauverny, Switzerland; (3) Observatoire de Geneve, 51 Chemin des Maillettes, CH-1290 Sauverny, Switzerland. 8 pages, 8 figures. Accepted for publication in A&

    Deconvolution with correct sampling

    Get PDF
    A new method for improving the resolution of astronomical images is presented. It is based on the principle that sampled data cannot be fully deconvolved without violating the sampling theorem. Thus, the sampled image should not be deconvolved by the total Point Spread Function, but by a narrower function chosen so that the resolution of the deconvolved image is compatible with the adopted sampling. Our deconvolution method gives results which are, in at least some cases, superior to those of other commonly used techniques: in particular, it does not produce ringing around point sources superimposed on a smooth background. Moreover, it allows to perform accurate astrometry and photometry of crowded fields. These improvements are a consequence of both the correct treatment of sampling and the recognition that the most probable astronomical image is not a flat one. The method is also well adapted to the optimal combination of different images of the same object, as can be obtained, e.g., from infrared observations or via adaptive optics techniques.Comment: 22 pages, LaTex file + 10 color jpg and postscript figures. To be published in ApJ, Vol 484 (1997 Feb.

    High accuracy transit photometry of the planet OGLE-TR-113b with a new deconvolution-based method

    Get PDF
    A high accuracy photometry algorithm is needed to take full advantage of the potential of the transit method for the characterization of exoplanets, especially in deep crowded fields. It has to reduce to the lowest possible level the negative influence of systematic effects on the photometric accuracy. It should also be able to cope with a high level of crowding and with large scale variations of the spatial resolution from one image to another. A recent deconvolution-based photometry algorithm fulfills all these requirements, and it also increases the resolution of astronomical images, which is an important advantage for the detection of blends and the discrimination of false positives in transit photometry. We made some changes to this algorithm in order to optimize it for transit photometry and used it to reduce NTT/SUSI2 observations of two transits of OGLE-TR-113b. This reduction has led to two very high precision transit light curves with a low level of systematic residuals, used together with former photometric and spectroscopic measurements to derive new stellar and planetary parameters in excellent agreement with previous ones, but significantly more precise.Comment: 8 pages, 4 figure

    A novel approach for extracting time-delays from lightcurves of lensed quasar images

    Get PDF
    We present a new method to estimate time delays from light curves of lensed quasars. The method is based on chi^2 minimization between the data and a numerical model light curve. A linear variation can be included in order to correct for slow long-term microlensing effects in one of the lensed images. An iterative version of the method can be applied in order to correct for higher order microlensing effects. The method is tested on simulated light curves. When higher order microlensing effects are present the time delay is best constrained with the iterative method. Analysis of a published data set for the lensed double Q0957+561 yields results in agreement with other published estimates.Comment: 6 pages, accepted for publication in A&

    Development of the SPECULOOS exoplanet search project

    Get PDF
    SPECULOOS (Search for habitable Planets EClipsing ULtra-cOOl Stars) aims to perform a transit search on the nearest (<40<40pc) ultracool (<3000<3000K) dwarf stars. The project's main motivation is to discover potentially habitable planets well-suited for detailed atmospheric characterisation with upcoming giant telescopes, like the James Webb Space Telescope (JWST) and European Large Telescope (ELT). The project is based on a network of 1m robotic telescopes, namely the four ones of the SPECULOOS-Southern Observatory (SSO) in Cerro Paranal, Chile, one telescope of the SPECULOOS-Northern Observatory (SNO) in Tenerife, and the SAINT-Ex telescope in San Pedro M\'artir, Mexico. The prototype survey of the SPECULOOS project on the 60~cm TRAPPIST telescope (Chile) discovered the TRAPPIST-1 system, composed of seven temperate Earth-sized planets orbiting a nearby (12~pc) Jupiter-sized star. In this paper, we review the current status of SPECULOOS, its first results, the plans for its development, and its connection to the Transiting Exoplanet Survey Satellite (TESS) and JWST

    SPECULOOS: a network of robotic telescopes to hunt for terrestrial planets around the nearest ultracool dwarfs

    Full text link
    We present here SPECULOOS, a new exoplanet transit search based on a network of 1m-class robotic telescopes targeting the ∼\sim1200 ultracool (spectral type M7 and later) dwarfs bright enough in the infrared (KK-mag ≤12.5\leq 12.5) to possibly enable the atmospheric characterization of temperate terrestrial planets with next-generation facilities like the James Webb Space Telescope\textit{James Webb Space Telescope}. The ultimate goals of the project are to reveal the frequency of temperate terrestrial planets around the lowest-mass stars and brown dwarfs, to probe the diversity of their bulk compositions, atmospheres and surface conditions, and to assess their potential habitability.Comment: 21 pages, 13 figures, 1 table. Proceedings of SPI

    Super-resolution imaging as a method to study GPCR dimers and higher-order oligomers

    Get PDF
    The study of G protein-coupled receptor (GPCR) dimers and higher-order oligomers has unveiled mechanisms for receptors to diversify signaling and potentially uncover novel therapeutic targets. The functional and clinical significance of these receptor–receptor associations has been facilitated by the development of techniques and protocols, enabling researchers to unpick their function from the molecular interfaces, to demonstrating functional significance in vivo, in both health and disease. Here we describe our methodology to study GPCR oligomerization at the single-molecule level via super-resolution imaging. Specifically, we have employed photoactivated localization microscopy, with photoactivatable dyes (PD-PALM) to visualize the spatial organization of these complexes to <10 nm resolution, and the quantitation of GPCR monomer, dimer, and oligomer in both homomeric and heteromeric forms. We provide guidelines on optimal sample preparation, imaging parameters, and necessary controls for resolving and quantifying single-molecule data. Finally, we discuss advantages and limitations of this imaging technique and its potential future applications to the study of GPCR function
    • …
    corecore