19 research outputs found

    Development of SimCells as a novel chassis for functional biosensors

    Get PDF
    This work serves as a proof-of-concept for bacterially derived SimCells (Simple Cells), which contain the cell machinery from bacteria and designed DNA (or potentially a simplified genome) to instruct the cell to carry out novel, specific tasks. SimCells represent a reprogrammable chassis without a native chromosome, which can host designed DNA to perform defined functions. In this paper, the use of Escherichia coli MC1000 ∆minD minicells as a non-reproducing chassis for SimCells was explored, as demonstrated by their ability to act as sensitive biosensors for small molecules. Highly purified minicells derived from E. coli strains containing gene circuits for biosensing were able to transduce the input signals from several small molecules (glucarate, acrylate and arabinose) into the production of green fluorescent protein (GFP). A mathematical model was developed to fit the experimental data for induction of gene expression in SimCells. The intracellular ATP level was shown to be important for SimCell function. A purification and storage protocol was developed to prepare SimCells which could retain their functions for an extended period of time. This study demonstrates that SimCells are able to perform as 'smart bioparticles' controlled by designed gene circuits

    The CD14+/lowCD16+ monocyte subset is more susceptible to spontaneous and oxidant-induced apoptosis than the CD14+CD16− subset

    Get PDF
    Human monocytes can be classified into two subsets with distinctive characteristics. In this study, we report a difference in apoptotic potential between these two subsets with CD14+/lowCD16+ monocytes being more susceptible than CD14+CD16− monocytes to undergo spontaneous apoptosis and apoptosis induced by reactive oxygen species (ROS). By global transcriptomic and proteomic approaches, we observed that CD14+/lowCD16+ monocytes expressed higher levels of pro-apoptotic genes and proteins such as TNFα, caspase 3, Bax and cytochrome c and showed more caspases 3 and 7 activities. They also exhibited greater aerobic respiration resulting in a higher production of ROS from the mitochondria. CD14+CD16− monocytes, in contrast, showed higher expression of glutathione (GSH)-metabolizing genes such as GSH peroxidase and microsomal GSH S-transferase and were more resistant to oxidative stress than CD14+/lowCD16+ monocytes. The apoptosis of CD14+/lowCD16+ monocytes was ROS dependent as reducing ROS levels significantly reduced cell death. This is the first report of a differential apoptotic propensity of human monocyte subsets, and gaining a better understanding of this process may help to provide a better understanding of the roles of these subsets during homeostasis and under pathological conditions, particularly in situations in which high levels of oxidants are present

    Forecasting Non-Stationary Diarrhea, Acute Respiratory Infection, and Malaria Time-Series in Niono, Mali

    Get PDF
    BACKGROUND: Much of the developing world, particularly sub-Saharan Africa, exhibits high levels of morbidity and mortality associated with diarrhea, acute respiratory infection, and malaria. With the increasing awareness that the aforementioned infectious diseases impose an enormous burden on developing countries, public health programs therein could benefit from parsimonious general-purpose forecasting methods to enhance infectious disease intervention. Unfortunately, these disease time-series often i) suffer from non-stationarity; ii) exhibit large inter-annual plus seasonal fluctuations; and, iii) require disease-specific tailoring of forecasting methods. METHODOLOGY/PRINCIPAL FINDINGS: In this longitudinal retrospective (01/1996-06/2004) investigation, diarrhea, acute respiratory infection of the lower tract, and malaria consultation time-series are fitted with a general-purpose econometric method, namely the multiplicative Holt-Winters, to produce contemporaneous on-line forecasts for the district of Niono, Mali. This method accommodates seasonal, as well as inter-annual, fluctuations and produces reasonably accurate median 2- and 3-month horizon forecasts for these non-stationary time-series, i.e., 92% of the 24 time-series forecasts generated (2 forecast horizons, 3 diseases, and 4 age categories = 24 time-series forecasts) have mean absolute percentage errors circa 25%. CONCLUSIONS/SIGNIFICANCE: The multiplicative Holt-Winters forecasting method: i) performs well across diseases with dramatically distinct transmission modes and hence it is a strong general-purpose forecasting method candidate for non-stationary epidemiological time-series; ii) obliquely captures prior non-linear interactions between climate and the aforementioned disease dynamics thus, obviating the need for more complex disease-specific climate-based parametric forecasting methods in the district of Niono; furthermore, iii) readily decomposes time-series into seasonal components thereby potentially assisting with programming of public health interventions, as well as monitoring of disease dynamics modification. Therefore, these forecasts could improve infectious diseases management in the district of Niono, Mali, and elsewhere in the Sahel

    Breed and adaptive response modulate bovine peripheral blood cells’ transcriptome

    Get PDF
    Background: Adaptive response includes a variety of physiological modifications to face changes in external or internal conditions and adapt to a new situation. The acute phase proteins (APPs) are reactants synthesized against environmental stimuli like stress, infection, inflammation. Methods: To delineate the differences in molecular constituents of adaptive response to the environment we performed the whole-blood transcriptome analysis in Italian Holstein (IH) and Italian Simmental (IS) breeds. For this, 663 IH and IS cows from six commercial farms were clustered according to the blood level of APPs. Ten extreme individuals (five APP+ and APP- variants) from each farm were selected for the RNA-seq using the Illumina sequencing technology. Differentially expressed (DE) genes were analyzed using dynamic impact approach (DIA) and DAVID annotation clustering. Milk production data were statistically elaborated to assess the association of APP+ and APP- gene expression patterns with variations in milk parameters. Results: The overall de novo assembly of cDNA sequence data generated 13,665 genes expressed in bovine blood cells. Comparative genomic analysis revealed 1,152 DE genes in the comparison of all APP+ vs. all APP- variants; 531 and 217 DE genes specific for IH and IS comparison respectively. In all comparisons overexpressed genes were more represented than underexpressed ones. DAVID analysis revealed 369 DE genes across breeds, 173 and 73 DE genes in IH and IS comparison respectively. Among the most impacted pathways for both breeds were vitamin B6 metabolism, folate biosynthesis, nitrogen metabolism and linoleic acid metabolism. Conclusions: Both DIA and DAVID approaches produced a high number of significantly impacted genes and pathways with a narrow connection to adaptive response in cows with high level of blood APPs. A similar variation in gene expression and impacted pathways between APP+ and APP- variants was found between two studied breeds. Such similarity was also confirmed by annotation clustering of the DE genes. However, IH breed showed higher and more differentiated impacts compared to IS breed and such particular features in the IH adaptive response could be explained by its higher metabolic activity. Variations of milk production data were significantly associated with APP+ and APP- gene expression patterns

    Application of ImageJ program to the enumeration of Orientia tsutsugamushi organisms cultured in vitro.

    No full text
    The ImageJ program was applied to the enumeration of Orientia tsutsugamushi organisms in cell culture using indirect immunofluorescence assay (IFA). The highest correlation (r=0.984) was observed between manual counting methods and the ImageJ program (MaxEntropy threshold algorithm). This software-based methodology is cheaper, more standardised and better reproducible than a manual-based approach

    Detection of new genotypes of Orientia tsutsugamushi infecting humans in Thailand

    Get PDF
    ABSTRACTPCR screening of blood specimens taken from 195 patients with serologically confirmed scrub typhus in three Thai provinces detected the 56-kDa protein-encoding gene from Orientia tsutsugamushi in ten (5%) patients. Significant genetic diversity was found among the ten amplicons, with nine new genotypes identified that were different from those found previously in Thailand. Phylogenetically, the ten sequences obtained in the present study and sequences from 71 strains characterised previously were distributed into several clusters that included the Karp, Gilliam, Kuroki, Saitama, Kawasaki and Kato clusters. Two of the new genotypes found in the present study clearly belonged to the Karp cluster. However, the other new genotypes formed three different clusters, including one cluster that appeared to be distant from all previously known clusters, and which may therefore be representative of a previously undescribed serotype. Other genotypes formed two other clusters that may also be associated with undescribed serotypes
    corecore