16 research outputs found

    Alternatively spliced form of human thyroperoxidase, TPOzanelli: activity, intracellular trafficking, and role in hormonogenesis.

    No full text
    International audienceThyroperoxidase (TPO), a type I transmembrane heme containing glycoprotein, catalyzes iodide organification and thyroid hormone synthesis. One of the two main alternatively spliced forms of this enzyme, TPOzanelli, which is present in Graves's disease thyroid tissue, has a cytoplasmic domain completely modified. In the first stage of this study, the results of RT-PCR experiments showed that the TPOzanelli mRNA is present in normal thyroid tissue. We then generated CHO cell lines expressing the wild-type TPO (TPO1) and the alternatively spliced form TPOzanelli. Upon investigating a panel of 12 mAbs directed against the extracellular domain of TPO1 and sera from patients with a high titer of TPO autoantibodies, we observed that (i) the three-dimensional structure of this domain is similar in both isoforms; (ii) the autoantibodies recognize TPOzanelli as well as TPO1. The results of pulse chase and cell surface biotinylation experiments showed that the TPOzanelli has a shorter half-life (7 versus 11 h) and is expressed at the cell surface in lesser amounts than TPO1 (7 versus 15%). The total enzymatic activity and cell surface activity were determined in CHO cells expressing TPO1 and TPOzanelli, and TPO1 and TPOzanelli were found to have similar levels of activity. It was established that approximately 20% of the TPO purified from a Graves' disease thyroid gland was precipitated by polyclonal antibodies directed against a specific part of the cytoplasmic tail of TPOzanelli. This confirmed that the protein corresponding to the mRNA is present in the thyroid tissue. All in all, these results indicate that TPOzanelli can be expected to play a role in thyroid hormone synthesis and in thyroid autoimmunity

    Role of complex asparagine-linked oligosaccharides in the expression of a functional thyrotropin receptor.

    No full text
    International audienceTo evaluate the functional role of complex asparagine-linked oligosaccharides of the human thyrotropin receptor (TSHR), a Chinese hamster ovary cell line (JP09) and a K562 cell line (K562-TSHR) expressing this receptor were treated with deoxymannojirimycin (dMM), a mannosidase I inhibitor. dMM blocks the formation of complex-type structures and leads to the formation of high-mannose-type structures. Treatment of cells with dMM led to a decrease in the number of thyrotropin (TSH)-binding sites at the cell surface. Detection of the TSHR at the cell surface using a monoclonal antibody directed against the A subunit showed that this decrease was not due to a decrease in the number of TSHRs expressed at the cell surface. However the recognition of TSHR by a monoclonal antibody directed against the C peptide was greatly decreased. On immunoblotting, after deglycosylation using peptide N-glycanase F, the A subunit was visualized as a doublet (36 and 41 kDa). In control cells the species of higher molecular mass was more abundant whereas after dMM treatment the species of lower molecular mass became more abundant. This difference in molecular mass between the two peptides is compatible with the removal of the C peptide. In conclusion, the results show that inhibition of complex-type structure formation leads to (i) an incapacity for TSHR to bind TSH, without affecting its intracellular transport and (ii) an increase of TSHR susceptibility to proteases that remove the C peptide. We then hypothesized that removal of the C peptide could contribute to the formation of a non-functional TSHR

    Role of complex asparagine-linked oligosaccharides in the expression of a functional thyrotropin receptor.

    No full text
    To evaluate the functional role of complex asparagine-linked oligosaccharides of the human thyrotropin receptor (TSHR), a Chinese hamster ovary cell line (JP09) and a K562 cell line (K562-TSHR) expressing this receptor were treated with deoxymannojirimycin (dMM), a mannosidase I inhibitor. dMM blocks the formation of complex-type structures and leads to the formation of high-mannose-type structures. Treatment of cells with dMM led to a decrease in the number of thyrotropin (TSH)-binding sites at the cell surface. Detection of the TSHR at the cell surface using a monoclonal antibody directed against the A subunit showed that this decrease was not due to a decrease in the number of TSHRs expressed at the cell surface. However the recognition of TSHR by a monoclonal antibody directed against the C peptide was greatly decreased. On immunoblotting, after deglycosylation using peptide N-glycanase F, the A subunit was visualized as a doublet (36 and 41 kDa). In control cells the species of higher molecular mass was more abundant whereas after dMM treatment the species of lower molecular mass became more abundant. This difference in molecular mass between the two peptides is compatible with the removal of the C peptide. In conclusion, the results show that inhibition of complex-type structure formation leads to (i) an incapacity for TSHR to bind TSH, without affecting its intracellular transport and (ii) an increase of TSHR susceptibility to proteases that remove the C peptide. We then hypothesized that removal of the C peptide could contribute to the formation of a non-functional TSHR.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    A circadian clock transcription model for the personalization of cancer chronotherapy

    No full text
    Circadian timing of anticancer medications has improved treatment tolerability and efficacy several fold, yet with intersubject variability. Using three C57BL/6-based mouse strains of both sexes, we identified three chronotoxicity classes with distinct circadian toxicity patterns of irinotecan, a topoisomerase I inhibitor active against colorectal cancer. Liver and colon circadian 24-hour expression patterns of clock genes Rev-erbα and Bmal1 best discriminated these chronotoxicity classes, among 27 transcriptional 24-hour time series, according to sparse linear discriminant analysis. An 8-hour phase advance was found both for Rev-erbα and Bmal1 mRNA expressions and for irinotecan chronotoxicity in clock-altered Per2m/m mice. The application of a maximum-a-posteriori Bayesian inference method identified a linear model based on Rev-erbα and Bmal1 circadian expressions that accurately predicted for optimal irinotecan timing. The assessment of the Rev-erbα and Bmal1 regulatory transcription loop in the molecular clock could critically improve the tolerability of chemotherapy through a mathematical model–based determination of host-specific optimal timing. Cancer Res; 73(24); 7176–88. ©2013 AACR

    Calnexin overexpression sensitizes recombinant CHO cells to apoptosis induced by sodium butyrate treatment

    No full text
    Sodium butyrate (NaBu) can enhance the expression of foreign genes in recombinant Chinese hamster ovary (rCHO) cells, but it can also inhibit cell growth and induce cellular apoptosis. In this study, the potential role of calnexin (Cnx) expression in rCHO cells treated with 5 mM NaBu was investigated for rCHO cells producing tumor necrosis factor receptor FC. To regulate the Cnx expression level, a tetracycline-inducible system was used. Clones with different Cnx expression levels were selected and investigated. With regard to productivity per cell (qp), NaBu enhanced the qp by over twofold. Under NaBu treatment, Cnx overexpression further enhanced the qp by about 1.7-fold. However, under NaBu stress, the cells overexpressing Cnx showed a poorer viability profile with a consistent difference of over 25% in the viability when compared to the Cnx-repressed condition. This drop in the viability was attributed to increased apoptosis seen in these cells as evidenced by enhanced poly (ADP-ribose) polymerase cleavage and cytochrome C release. Ca2+ localization staining and subsequent confocal imaging revealed elevated cytosolic Ca2+ ([Ca2+]c) in the Cnx-overexpressing cells when compared to the Cnx-repressed condition, thus endorsing the increased apoptosis observed in these cells. Taken together, Cnx overexpression not only improved the qp of cells treated with NaBu, but it also sensitized cells to apoptosis
    corecore