392 research outputs found

    The nonrelativistic limit of the Magueijo-Smolin model of deformed special relativity

    Full text link
    We study the nonrelativistic limit of the motion of a classical particle in a model of deformed special relativity and of the corresponding generalized Klein-Gordon and Dirac equations, and show that they reproduce nonrelativistic classical and quantum mechanics, respectively, although the rest mass of a particle no longer coincides with its inertial mass. This fact clarifies the meaning of the different definitions of velocity of a particle available in DSR literature. Moreover, the rest mass of particles and antiparticles differ, breaking the CPT invariance. This effect is close to observational limits and future experiments may give indications on its effective existence.Comment: 10 pages, plain TeX. Discussion of generalized Dirac equation and CPT violation adde

    Coulomb integrals for the SL(2,R) WZNW model

    Full text link
    We review the Coulomb gas computation of three-point functions in the SL(2,R) WZNW model and obtain explicit expressions for generic states. These amplitudes have been computed in the past by this and other methods but the analytic continuation in the number of screening charges required by the Coulomb gas formalism had only been performed in particular cases. After showing that ghost contributions to the correlators can be generally expressed in terms of Schur polynomials we solve Aomoto integrals in the complex plane, a new set of multiple integrals of Dotsenko-Fateev type. We then make use of monodromy invariance to analytically continue the number of screening operators and prove that this procedure gives results in complete agreement with the amplitudes obtained from the bootstrap approach. We also compute a four-point function involving a spectral flow operator and we verify that it leads to the one unit spectral flow three-point function according to a prescription previously proposed in the literature. In addition, we present an alternative method to obtain spectral flow non-conserving n-point functions through well defined operators and we prove that it reproduces the exact correlators for n=3. Independence of the result on the insertion points of these operators suggests that it is possible to violate winding number conservation modifying the background charge.Comment: Improved presentation. New section on spectral flow violating correlators and computation of a four-point functio

    Rational Design of Novel Anticancer Small-Molecule RNA m6A Demethylase ALKBH5 Inhibitors

    Get PDF
    The RNA 6-N-methyladenosine (m6A) demethylase ALKBH5 has been shown to be oncogenic in several cancer types, including leukemia and glioblastoma. We present here the target-tailored development and first evaluation of the antiproliferative effects of new ALKBH5 inhibitors. Two compounds, 2-[(1-hydroxy-2-oxo-2-phenylethyl)sulfanyl]acetic acid (3) and 4-{[(furan-2-yl)methyl]amino}-1,2-diazinane-3,6-dione (6), with IC50 values of 0.84 mu M and 1.79 mu M, respectively, were identified in high-throughput virtual screening of the library of 144 000 preselected compounds and subsequent verification of hits in an m6A antibody-based enzyme-linked immunosorbent assay (ELISA) enzyme inhibition assay. The effect of these compounds on the proliferation of selected target cancer cell lines was then measured. In the case of three leukemia cell lines (HL-60, CCRF-CEM, and K562) the cell proliferation was suppressed at low micromolar concentrations of inhibitors, with IC50 ranging from 1.38 to 16.5 mu M. However, the effect was low or negligible in the case of another leukemia cell line, Jurkat, and the glioblastoma cell line A-172. These results demonstrate the potential of ALKBH5 inhibition as a cancer-cell-type-selective antiproliferative strategy.Peer reviewe

    Local well-posedness for the space-time Monopole equation in Lorenz gauge

    Full text link
    It is known from the work of Czubak that the space-time Monopole equation is locally well-posed in the Coulomb gauge for small initial data in Hs(R2)H^s(\mathbb{R}^2) for s>1/4s>1/4. Here we prove local well-posedness for arbitrary initial data in Hs(R2)H^s(\mathbb{R^2}) with s>1/4s>1/4 in the Lorenz gauge.Comment: To appear in NoDE

    An aerodynamic tradeoff study of the scissor wing configuration

    Get PDF
    A scissor wing configuration, consisting of two independently sweeping wings was numerically studied. This configuration was also compared with an equivalent fixed wing baseline. Aerodynamic and stability and control characteristics of these geometries were investigated over a wide range of flight Mach numbers. It is demonstrated that in the purely subsonic flight regime, the scissor wing can achieve higher aerodynamic efficiency as the result of slightly higher aspect ratio. In the transonic regime, the lift to drag ratio of the scissor wing is shown to be higher than that of the baseline, for higer values of the lift coefficient. This tends to make the scissor wing more efficient during transonic cruise at high altitudes as well as during air combat at all altitudes. In supersonic flight, where the wings are maintained at maximum sweep angle, the scissor wing is shown to have a decided advantage in terms of reduced wave drag. From the view point of stability and control, the scissor wing is shown to have distinct advantages. It is shown that this geometry can maintain a constant static margin in supersonic as well as subsonic flight, by proper sweep scheduling. Furthermore, it is demonstrated that addition of wing mounted elevons can greatly enhance control authority in pitch and roll

    The least common multiple of a sequence of products of linear polynomials

    Full text link
    Let f(x)f(x) be the product of several linear polynomials with integer coefficients. In this paper, we obtain the estimate: loglcm(f(1),...,f(n))An\log {\rm lcm}(f(1), ..., f(n))\sim An as nn\rightarrow\infty , where AA is a constant depending on ff.Comment: To appear in Acta Mathematica Hungaric

    The Selberg trace formula for Dirac operators

    Full text link
    We examine spectra of Dirac operators on compact hyperbolic surfaces. Particular attention is devoted to symmetry considerations, leading to non-trivial multiplicities of eigenvalues. The relation to spectra of Maass-Laplace operators is also exploited. Our main result is a Selberg trace formula for Dirac operators on hyperbolic surfaces

    Some recursive formulas for Selberg-type integrals

    Full text link
    A set of recursive relations satisfied by Selberg-type integrals involving monomial symmetric polynomials are derived, generalizing previously known results. These formulas provide a well-defined algorithm for computing Selberg-Schur integrals whenever the Kostka numbers relating Schur functions and the corresponding monomial polynomials are explicitly known. We illustrate the usefulness of our results discussing some interesting examples.Comment: 11 pages. To appear in Jour. Phys.

    Wigner quantization of some one-dimensional Hamiltonians

    Full text link
    Recently, several papers have been dedicated to the Wigner quantization of different Hamiltonians. In these examples, many interesting mathematical and physical properties have been shown. Among those we have the ubiquitous relation with Lie superalgebras and their representations. In this paper, we study two one-dimensional Hamiltonians for which the Wigner quantization is related with the orthosymplectic Lie superalgebra osp(1|2). One of them, the Hamiltonian H = xp, is popular due to its connection with the Riemann zeros, discovered by Berry and Keating on the one hand and Connes on the other. The Hamiltonian of the free particle, H_f = p^2/2, is the second Hamiltonian we will examine. Wigner quantization introduces an extra representation parameter for both of these Hamiltonians. Canonical quantization is recovered by restricting to a specific representation of the Lie superalgebra osp(1|2)

    Quantum Limits of Eisenstein Series and Scattering states

    Full text link
    We identify the quantum limits of scattering states for the modular surface. This is obtained through the study of quantum measures of non-holomorphic Eisenstein series away from the critical line. We provide a range of stability for the quantum unique ergodicity theorem of Luo and Sarnak.Comment: 12 pages, Corrects a typo and its ramification from previous versio
    corecore