We review the Coulomb gas computation of three-point functions in the SL(2,R)
WZNW model and obtain explicit expressions for generic states. These amplitudes
have been computed in the past by this and other methods but the analytic
continuation in the number of screening charges required by the Coulomb gas
formalism had only been performed in particular cases. After showing that ghost
contributions to the correlators can be generally expressed in terms of Schur
polynomials we solve Aomoto integrals in the complex plane, a new set of
multiple integrals of Dotsenko-Fateev type. We then make use of monodromy
invariance to analytically continue the number of screening operators and prove
that this procedure gives results in complete agreement with the amplitudes
obtained from the bootstrap approach. We also compute a four-point function
involving a spectral flow operator and we verify that it leads to the one unit
spectral flow three-point function according to a prescription previously
proposed in the literature. In addition, we present an alternative method to
obtain spectral flow non-conserving n-point functions through well defined
operators and we prove that it reproduces the exact correlators for n=3.
Independence of the result on the insertion points of these operators suggests
that it is possible to violate winding number conservation modifying the
background charge.Comment: Improved presentation. New section on spectral flow violating
correlators and computation of a four-point functio