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ABSTRACT: The RNA 6-N-methyladenosine (m6A) demethylase ALKBH5 has been shown
to be oncogenic in several cancer types, including leukemia and glioblastoma. We present here
the target-tailored development and first evaluation of the antiproliferative effects of new
ALKBH5 inhibitors. Two compounds, 2-[(1-hydroxy-2-oxo-2-phenylethyl)sulfanyl]acetic acid
(3) and 4-{[(furan-2-yl)methyl]amino}-1,2-diazinane-3,6-dione (6), with IC50 values of 0.84
μM and 1.79 μM, respectively, were identified in high-throughput virtual screening of the library
of 144 000 preselected compounds and subsequent verification of hits in an m6A antibody-
based enzyme-linked immunosorbent assay (ELISA) enzyme inhibition assay. The effect of
these compounds on the proliferation of selected target cancer cell lines was then measured. In
the case of three leukemia cell lines (HL-60, CCRF-CEM, and K562) the cell proliferation was
suppressed at low micromolar concentrations of inhibitors, with IC50 ranging from 1.38 to 16.5
μM. However, the effect was low or negligible in the case of another leukemia cell line, Jurkat,
and the glioblastoma cell line A-172. These results demonstrate the potential of ALKBH5
inhibition as a cancer-cell-type-selective antiproliferative strategy.

1. INTRODUCTION

The interest in RNA modifications and their relevance to gene
expression regulation at the RNA level has rapidly increased
during the past few years.1,2 One of the most abundant
modifications is N6-methyladenosine (m6A) that has been
detected in different types of RNA molecules.3,4 The 6-
aminomethylation of adenosine is dynamically regulated in
mammalian cells by RNA methyltransferases or “writers”,
demethylases or “erasers”, and m6A recognizing proteins or
“readers”.5,6 Two enzymatic systems are known that transfer
the methyl group from the donor substrate S-adenosylmethio-
nine (SAM) to the 6-amino group of the adenine. First, this
reaction can be catalyzed by a heterodimer complex, the core
of which consists of methyltransferase-like protein 3
(METTL3) and METTL14. These can further be associated
with other regulatory proteins such as Wilms tumor 1-
associated protein (WTAP), RBM15/RBM15B, and Virma
(originally known as KIAA1429).7−11 The more recently
discovered enzyme METTL1612 targets pre-mRNAs and
various noncoding RNAs13 and participates in the regulation
of SAM synthesis.14,15 The m6A modification in mRNA is
specifically recognized by YT521B homology (YTH) family of
proteins.9,16 Three YTHDF (YTH domain family) members,
YTHDF1, YTHDF2, and YTHDF3,17,18 and two YTHDC
(YTH domain-containing) proteins, YTHDC119 and
YTHDC2,20 have been identified as m6A readers. In addition
to the direct effects of m6A on RNA, m6A-modification-
induced signaling is mediated by these YTH-family proteins to
regulate various cellular responses and cell fate decisions.

The methyl group of m6A can be removed by two RNA
demethylases, fat mass and obesity-associated protein (FTO)
and α-ketoglutarate-dependent dioxygenase homologue 5
(ALKBH5).21−23 They are members of the non-heme
Fe(II)/2-oxoglutarate (2OG)-dependent dioxygenase super-
family associated with regulation of protein synthesis.21

ALKBH5 is predominantly localized to nuclear speckles and
therefore likely demethylates m6A in nascent RNA or in pre-
mRNA in the nucleus.22,23 Unlike FTO, ALKBH5 has no
activity toward N-6,2′-O-dimethyladenosine (m6Am). Several
crystal structures of the ALKBH5 catalytic domain have been
reported, either bound to 2-oxoglutarate or to an inhib-
itor.21,24,25 ALKBH5 demethylates ssRNAs and ssDNAs that
contain m6A residues, and its activity is, to a minor degree,
inhibited by citrate.21 The available structural data facilitate the
rational design of new specific ALKBH5 inhibitors and
activators based on the established binding pocket of this
protein. Specific and efficient ALKBH5 inhibitors or activators
would enable a closer examination of the physiological and
pathological processes related to the m6A demethylation of
RNA.26
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Data accumulated during the past few years have linked
abnormalities in ALKBH5 functionality to different cancer
types (cf. Table S1). Depending on the cancer type, ALKBH5
may act as either a cancer promoter or a cancer suppressor.27,28

In some cases, the ALKBH5 expression has been associated
with that of other regulatory genes, while in some cases,
ALKBH5 activity has been associated with specific target
mRNAs (cf. Table S2).
For instance, it has been shown that ALKBH5 is inducible

by hypoxia-inducible factor 1 (HIF-1) in different cells.29 A
hypoxic microenvironment, a common feature to various
tumors, promotes cancer progression. ALKBH5 has been
reported to promote tumorigenesis and proliferation in
glioblastoma stem-like cells (GSCs),30 breast cancer stem
cells (BCSCs),31 and SiHa human cervical cancer cells.32

Furthermore, the cells’ motility was also increased by
ALKBH5. Thus, since ALKBH5-mediated reduction of RNA
m6A levels promotes cancer cell proliferation, increasing m6A
levels through inhibition of ALKBH5 may have anticancer
effects.32 It has also been shown that deletion of ALKBH5
sensitized melanoma and colorectal cancer tumors to cancer

immunotherapy.33 Furthermore, inhibition of ALKBH5 sup-
pressed tumor growth combined with PD-1 and GVAX
immunotherapy in mice.33 A recent analysis of tissue
microarray of the tumors in 177 esophageal squamous cell
carcinoma ESCC patients has shown that higher expression of
ALKBH5 correlated with poor prognosis. Moreover, the
authors identified the expression of ALKBH5, but not FTO,
as an independent prognostic factor for patient survival.34

The reported abnormalities in the expression of ALKBH5 in
cancer cells and its participation in tumorigenesis are
summarized in Table S1. From these data, it is evident that
the change in ALKBH5 can be both oncogenic and cancer-
suppressing, depending on the type of cancer. Such complexity
of the m6A regulation in cancer has been recently
demonstrated in a study of the relationship between
ALKBH5 and hepatocellular carcinoma (HCC).35 Contrary
to the above examples, it was found that ALKBH5 was
downregulated in HCC. Poor patient survival correlated with
lower levels of ALKBH5. Experimentally, increased ALKBH5
expression was able to reduce HCC cell proliferation and
invasiveness. The authors concluded that mechanistically,

Table 1. Compounds with the Highest Docking Efficiencies to RNA m6A Demethylase ALKBH5
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reduced ALKBH5 activity led to increased levels of m6A on
LY6/PLAUR domain-containing 1 (LYPD1) mRNA. The
m6A-methylated transcripts were recognized by the m6A
effector insulin-like growth factor 2 mRNA binding protein 1
(IGF2BP1) leading to stabilization of LYPD1 mRNA and
increased LYPD1 protein expression promoting HCC tumor-
igenicity. Furthermore, downregulation of ALKBH5 has been
observed in pancreatic cancer cells36−38 and colon cancer
cells;39 thus, this m6A demethylase is expected to act as a
tumor suppressor also in these cases.
However, in most cases, ALKBH5 has been recognized as an

oncogene.40−46 Recently, it has been shown that similarly to
the other RNA m6A demethylase FTO,47,48 ALKBH5 is
abnormally overexpressed in acute myeloid leukemia (AML)
and this overexpression correlates with poor prognosis in AML
patients.49 Although ALKBH5 is not essential for normal
hematopoiesis, it was necessary for self-renewal of leukemia
stem or initiating cells (LSCs/LICs) and for the development
and persistence of AML. ALKBH5 acts post-transcriptionally
on its critical targets such as transforming acidic coiled-coil
containing protein 3 (TACC3), a prognosis-associated
oncogene in various cancers.48,49 Earlier, a high significance
of the ALKBH5 expression has been reported in glioblastoma
stem cells (GBMSCs). It was shown that the demethylase
ALKBH5 is highly expressed in GSCs, as well as in established
glioblastoma cell lines.30 It has been shown recently that a new

sodium channel blocker imidazobenzoxazin-5-thione MV1035
significantly reduces U87 cell line migration and invasiveness
by inhibiting ALKBH5 enzymatic activity at the micromolar
level.50 Very recently, it was shown that m6A RNA
demethylase ALKBH5 promotes the radioresistance of
GBMSCs by controlling the homologous repair and influences
GBMSC invasion.51

Therefore, it can be concluded that present knowledge
supports the hypothesis that the compounds inhibiting
ALKBH5 activity can act as suppressors of different types of
cancer.52 Two attractive targets would be AML and
glioblastoma, one of which represents a liquid and another a
solid tumor. Notably, very recently small-molecule inhibitors of
another RNA m6A demethylase acting as AML suppressors
were reported.53 Thus, in this work, our aim was to design and
identify effective ALKBH5 inhibitors and test their activity
against selected AML and GSC lines.

2. RESULTS AND DISCUSSION

A virtual screening using the Glide VSW module of
Schrödinger was carried out for the compounds from the
FIMM compound library (HTB, 2018). A virtual screening on
the FIMM compound library (HTB, 2018) containing
∼144 000 compounds was carried out using nitrogen-
containing heterocycles as base structures. As a result, six
different compounds with the highest docking free energies

Figure 1. Binding compounds to ALKBH5 protein. (A) Docking binding position of compound 3 at the active center of ALKBH5 protein. (B)
Docking binding position of compound 6 at the active center of ALKBH5 protein. (C) PageBlue Protein Staining visualization of unbiased DARTS
of ALKBH5 protein treated with compounds 3 and 6 at 10 and 100 μM concentrations.
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and/or ligand efficiencies were selected to study interactions
between compounds and protein.
The docking free energies (ΔG) and ligand efficiencies (LE)

of the best binding compounds, and their molecular structures
are given in Table 1.
Interactions between a ligand and ALKBH5 protein were

found by carrying out the molecular docking using AutoDock
4.2. As shown by the molecular docking calculations, the
amino acid residues of the protein Lys132, Tyr139, Asn193,
Asp206, His204, and Arg283 were involved in specific
interactions between the protein and ligand (Figure 1).
The molecular dynamics simulations were carried out for

two compounds, 3 and 6, the compounds with the best
enzymatic inhibition activity. In the case of compound 3,
several molecular dynamics simulation runs were carried out
with a length of 10 ns. This system was stable throughout the
calculation time (Figure 2A). Strong hydrogen bonds were
detected between the compound 3 carboxyl group atoms and
the ammonium group of Asn193 residue of ALKBH5 protein
(Figure 2B). The simulation interactions diagram (Figure 2C)
indicates that the most important interactions for this
compound are hydrogen bonds between the ligand and the
residues Asn193 and His204 of ALKBH5. There are additional
water bridges and hydrophobic interactions between ligand 3
and ALKBH5 protein. The bars in the diagram (Figure 2C)
characterize the time fraction that a particular specific
interaction is maintained during the simulation. Based on
this, we can assume that compound 3 is bound to the active
site of ALKBH5 protein (Figure 2D).
The results of the molecular dynamics simulation of

compound 6 are shown in Figure 3. Again, several molecular

dynamics simulation runs were carried out with a length of 10
ns, and the trajectory analysis shows the stability of the system
during the calculation (Figure 3A). There is one strong
hydrogen bond between the ligand and His204 residue of
ALKBH5 protein. In addition, a water bridge with Tyr195,
His204, and Asp206 is suggested (Figure 3B,C). Compound 6
is bound to a tight specific pocket in the active site of ALKBH5
protein (Figure 3D).
The binding of inhibitory compounds to ALKBH5 was

studied using the drug affinity responsive target stability
(DARTS) measurements. The results given in Figure 1C
indicate a substantial effect of compound 3 on the stability of
the protein that reflects the binding of this compound. In the
case of compound 6, this effect is significantly smaller.
The inhibition of ALKBH5 RNA m6A demethylation

activity was experimentally studied for the six compounds
with the highest docking efficiency (Table 1). Significant
inhibitory activity was observed in the case of two compounds.
The dependence of the inhibitory effect (IE) on the inhibitor
concentration for compounds 3 and 6 is shown in Figure 4.
The inhibitory concentrations are IC50 = 0.84 μM for

compound 3 and IC50 = 1.79 μM for compound 6,
demonstrating that both compounds are efficient inhibitors
of the RNA m6A demethylase ALKBH5. These compounds
were then used in further studies as potential antiproliferative
agents for their cancer cell growth-suppressing activities.
The antiproliferative effects of the developed ALKBH5

inhibitors on cancer cells were studied using four leukemia cell
lines and one glioblastoma cell line. The selection of cancer
type was based on earlier observations stating that the
overexpression of the ALKBH5 gene in leukemia and

Figure 2. Results of the molecular dynamics simulation of ALKBH5 in complex with compound 3. (A) Protein and ligand position root-mean-
square deviation (RMSD) plot against time in the case of the ALKBH5 with compound 3 for 10 ns runs. (B) Normalized stacked bar chart of
interactions and contacts between the protein and ligand over the course of trajectory; interactions occurring more than 30% of the simulation
time. Interaction diagram between compound 3 and ALKBH5. (C) Desmond 2D profile data for compound 3 binding to ALKBH5. (D) Position
of compound 3 in the structure of ALKBH5.
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glioblastoma patients was correlated with poor prognosis of the
disease.30,49 The cell lines selected for further study are briefly
characterized in Table 2.
The time dependence of the inhibitory effects of compounds

3 and 6 on the cell viability at different concentrations are
given in Figures 5 and 6, respectively. Cell viability under
treatment with a compound was calculated as the ratio of the
number of cells in the compound treated to the number of
untreated cells in the presence of corresponding vehicle.

N
N

viability %
(compound)

(no compound)
=

(1)

In the case of all studied cell lines, a strong toxic effect of
compounds was observed starting from 1 mM concentrations,
developing rapidly after the treatment with a compound. We

therefore examined the inhibitory effects of the compounds in
the range of 1−100 μM, i.e., at the concentrations where the
inhibition was registered in the enzymatic assay. Notably, both
compounds 3 and 6 demonstrated significant antiproliferative
effects on the HEK-293T cells at 100 μM concentration
(Figures 5A and 6A). At lower concentrations, the compounds
had no effects on these cells. However, inhibitory effects of
compounds at lower concentrations were observed for
leukemia cell lines (HL-60, CCRF-CEM, and K562). In
most cases, the effects were already notable when measured at
4 h during the treatment of the cell cultures with the
compounds and lasting throughout the 48 h experiment.

Figure 3. Results of the molecular dynamics simulation of ALKBH5 in complex with compound 6. (A) Protein and ligand position root-mean-
square deviation (RMSD) plot against time in the case of the ALKBH5 with compound 6 for 10 ns runs. (B) Normalized stacked bar chart of
interactions and contacts between the protein and ligand over the course of trajectory; interactions occurring more than 30% of the simulation
time. Interaction diagram between compound 6 and ALKBH5. (C) Desmond 2D profile data for compound 6 binding to ALKBH5. (D) Position
of compound 6 in the structure of ALKBH5.

Figure 4. Inhibitory effect (IE) of compounds 3 (A) and 6 (B) on the
demethylation of the probe RNA by ALKBH5.

Table 2. Cell Lines Studied

cell line disease

NCI
thesaurus
code

gender
of cell age at sampling

HEK-
293T

n/a n/a female fetus

HL-60 adult acute myeloid
leukemia

C9154 female 35 years

CCRF-
CEM

childhood T acute
lymphoblastic
leukemia

C7953 female 3 years 11 months

Jurkat childhood T acute
lymphoblastic
leukemia

C7953 male 14 years

K562 chronic myelogenous
leukemia, BCR-
ABL1-positive

C3174 female 53 years

A-172 glioblastoma C3058 male 53 years
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Contrary to the expectations from the earlier work showing
oncogenic character of the ALKBH5 in the case of
glioblastoma,30 the inhibitory effect of our ALKBH5 inhibitors
on the viability of the glioblastoma A-172 cells was negligible
(cf. Figures 5F and 6F). This is in accordance with the recently
published results on the inhibition of a different glioblastoma
cell line, U87-MG cells with another ALKBH5 inhibitor,
imidazobenzoxazin-5-thione (MV1035), where practically no
effect of this effect on the cell viability was reported.50 The
inhibitory concentrations IC50 of compounds 3 and 6 on
different cell lines are presented in Table 3.
Keeping in mind the diversity of the effects of the m6A on

different cancers,54,55 the variability in the effects of the
ALKBH5 inhibitors is not unexpected. However, further
studies will be necessary to understand the detailed differences
in the regulation of RNA m6A methylation and its
contribution to mitogenic control in cancer and normal cells.

3. MATERIALS AND METHODS

3.1. Computational Modeling. The search for the RNA
m6A demethylase ALKBH5 binding compounds was carried
out based on the available protein crystal structures. The
structure of the RNA m6A demethylase ALKBH5 (PDB:
4O61) had been measured by X-ray diffraction with resolution
1.9 Å.21 This crystal structure was edited by automatic addition
of missing hydrogen atoms to the protein using Schrödinger’s
Protein Preparation Wizard of Maestro 10.7.56 The virtual
screening was carried out based on molecular docking to find

compounds from the FIMM compound library (HTB, 2018)
database with the best docking scores using Glide Virtual
Screening Workflow (VSW) module of the Schrödinger suite
2015 and AutoDock 4.2.57 AutoDock 4.257 was used for the
docking studies to find out binding energies and binding
modes of small-molecule ligands to the protein. The number of
rotatable bonds of ligand was set by default according to the
AutoDockTools 1.5.6.57 When the number of rotatable bonds
exceeded six, some of these were fixed. A grid box of
dimension 70 × 70 × 70 points with a spacing of 0.375 Å was
used as surrounding the active site of the enzyme. In all
molecular docking simulations, the AutoDock 4.2 force field
was used. The binding of the small molecules to the protein
was characterized by ligand efficiencies (LE), calculated as
follows

G
N

LE dock= −
Δ

(2)

where ΔGdock is the docking free energy and N is the number
of nonhydrogen (“heavy”) atoms in the small molecule.
The geometrical structure of ligand molecules was optimized

using the density functional theory B3LYP method58 with the
6-31G basis set.
Ten molecular dynamics simulation runs with a length of 10

ns and relaxation time of 1 ps were carried out for each
complex of ALKBH5 protein with compounds 3 and 6,
respectively. The molecular dynamics simulations were carried
out using the Desmond simulation package of Schrödinger

Figure 5. Time dependence of cell viability at different concentrations of the ALKBH5 inhibitor 3. (A) HEK-293T; (B) HL-60; (C) CCRF-CEM;
(D) Jurkat; (E) K562; (F) A-172. Data presented as mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001, two-way analysis of variance (ANOVA) test.
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LLC.59 The NPT ensemble with a temperature of 300 K and
pressure of 1 bar was applied in all runs. Ten simulation runs
with a length of 10 ns and relaxation time of 1 ps were carried
out for each system. The OPLS_2005 force field parameters
were used in all simulations.60 The long-range electrostatic
interactions were calculated using the particle mesh Ewald
method.61 The cutoff radius in Coulomb interactions was 9.0
Å. The water molecules were described using the simple point
charge (SPC) model.62 The behavior and interactions between
the ligands and enzyme were analyzed using the Simulation
Interaction Diagram tool implemented in Desmond molecular
dynamics package. The stability of molecular dynamics
simulations was monitored by the root-mean-square deviation
(RMSD) of the ligand and protein atom positions in time.

3.2. Compounds. (1) 3-(5-Chloro-1,3-dioxo-2,3,3a,4,7,7a-
hexahydro-1H-isoindol-2-yl)propanoic acid (ChemBridge Cor-
poration, San Diego, CA, Cat. No. 5814560, purity: 90%). (2)
(2Z)-3 -[(2H-1 ,3 -benzodioxo l -5 -y l )methy l] -2 - [(4-
ethoxyphenyl)imino]-N-(2-methoxy-phenyl)-4-oxo-1,3-thiazi-
nane-6-carboxamide (ChemDiv, Inc., San Diego, CA, Cat. No.
2738-0165, purity: >90%). (3) 2-[(1-Hydroxy-2-oxo-2-
phenylethyl)sulfanyl]acetic acid (Enamine Ltd., Monmouth
Jct., NJ, Cat No. EN300-14040, purity: >90%). (4) 3-[1-(3-
Chloro-4-methylphenyl)-2,5-dioxoimidazolidin-4-yl]propanoic
acid (Enamine Ltd., Cat No. Z234897619, purity: >90%). (5)
2-(1,3-Benzothiazol-2-ylsulfanyl)propanoic acid (Specs Com-
pound Handling B.V., Zoetermeer, The Netherlands, Cat. No.
AI-204/31680041, purity: 90%). (6) 4-{[(Furan-2-yl)methyl]-
amino}-1,2-diazinane-3,6-dione (Vitas-M Laboratory, Ltd.,
Causeway Bay, Hong Kong, Cat. No. STL352808, purity:
>90%).

3.3. Cell Lines. Embryonic kidney cells HEK-293T (CRL-
1573), childhood T acute lymphoblastic leukemia cells CCRF-
CEM (CRM-CCL-119), adult acute myeloid leukemia HL-60
(CCL-240), and immortalized T lymphocyte Jurkat cells
(CRL-2899) were all obtained from ATCC (Manassas, VA).

3.4. ALKBH5 Protein Synthesis. The synthesis of
ALKBH5 protein was carried out using the baculovirus
expression method. The protocol of the synthesis and
purification of the protein is given in the Supporting
Information (Part II).

Figure 6. Time dependence of cell viability at different concentrations of the ALKBH5 inhibitor 6. (A) HEK-293T; (B) HL-60; (C) CCRF-CEM;
(D) Jurkat; (E) K562; (F) A-172. Data presented as mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001, two-way ANOVA test.

Table 3. Inhibitory Concentrations IC50 of Compounds 3
and 6 on Different Cell Linesa

cell line compound 3, IC50 (μM) compound 6, IC50 (μM)

HEK-293T >50 40.5 ± 13.1
CCRF-CEM 1.38 ± 0.30 7.62 ± 2.61
HL-60 11.9 ± 2.3 11.0 ± 2.7
Jurkat 47.8 ± 28.3 41.3 ± 4.7
K562 16.5 ± 2.1 1.41 ± 0.12
A-172 >50 >50

aThe IC50 values are calculated as average from time points 4, 8, 24,
and 48 h.
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3.5. Drug Affinity Responsive Target Stability
(DARTS) Measurement of Ligand Binding. The DARTS
experiment was modified from Pai et al.63 Solutions of the
studied ALKBH5 inhibitors 3 and 6, the ALKBH5 truncated
protein (66−292), and pronase were prepared using TNC
buffer. All samples contained 5 μg of ALKBH5 protein, and
inhibitors were added at concentrations 100 and 10 μM. All
protein and inhibitor samples were incubated 2 h at RT. After
incubation, 0.05 μg of Pronase (Sigma-Aldrich) was added and
incubated at RT for 10 min and stopped by adding protease
inhibitor. The 2× sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE) sample buffer (Laemelli buffer)
was added to the protein solutions to yield a 1× sample buffer
concentration, and all samples were incubated for 5 min at 100
°C. Samples (15 μL) and prestained SDS-PAGE standard (5
μL) were loaded into 10% polyacrylamide gel. Electrophoresis
was carried out for 55 min at RT using a voltage of 200 V in a
1× SDS running buffer. The gel was stained thereafter using
PageBlue Protein Staining Solution (Thermo Scientific).
3.6. Enzyme Inhibition. The enzymatic assay was applied

as described by Huang et al.,64 except using ALKBH5 instead
of FTO as the RNA demethylating enzyme. The experiments
were conducted in reaction buffer (50 mM Tris-HCl, pH 7.5,
300 μM 2OG, 280 μM (NH4)2Fe(SO4)2 and 2 mM L-ascorbic
acid). The reaction mixture contained 200 ng of methylated
N6-adenine RNA probe (5′-CUUGUCAm6ACAGCAGA-3′,
PerkinElmer Horizon Discovery Ltd., Dharmacon, Cambridge,
U.K.) and 10 nM ALKBH5 protein. Reactions were incubated
on a 96-well plate for 2 h at RT. After that, m6A was measured
using EpiQuik m6A RNA methylation Quantification Colori-
metric Kit (Epigentek Group, Inc., Farmingdale, NY). The
inhibitory effect (IE) of compounds on RNA probe
demethylation by ALKBH5 was calculated as the increase in
the amount of m6A compared to the negative control
(dimethyl sulfoxide (DMSO)) relative to the difference
between the amounts of m6A of the positive control (max
inhibition) and the negative control (eq 3)

C C
C C

IE
(max)

inh DMSO

inh DMSO
=

−
− (3)

where Cinh, Cinh(max), and CDMSO are the amounts of m6A at a
given concentration of the inhibitor, maximum inhibition, and
in the case of DMSO, respectively.
3.7. Leukemia Cell Lines Assay. The Childhood T acute

lymphoblastic leukemia cell line CCRF-CEM and Jurkat cells
were grown in Roswell Park Memorial Institute medium 1640
(RPMI 1640; Thermo Fisher Scientific Invitrogen, Waltham,
MA) supplemented with 10% heat-inactivated fetal bovine
serum (FBS; Thermo Fisher Scientific Invitrogen, Waltham,
MA) and penicillin/streptomycin. HL-60 cells were grown in
Iscove’s modified Dulbecco’s medium (Thermo Fisher
Scientific Invitrogen, Waltham, MA) supplemented with 20%
heat-inactivated FBS and penicillin/streptomycin. K562 cells
were also grown in Iscove’s modified Dulbecco’s medium
(Thermo Fisher Scientific Invitrogen, Waltham, MA), but
supplemented with 10% heat-inactivated FBS and penicillin/
streptomycin.
A total of 1 × 105 CCRF-CEM, HL-60, K562, and Jurkat

cells were seeded separately in 1 mL on a 24-well plate. The
cells were grown for 48 h with added compounds at given
concentrations, and 0.5% DMSO was used as a vehicle control.
The cells were counted at time points 0, 4, 8, 24, and 48 h. Cell

viability was measured using Countess Automated Cell
Counter (Thermo Fisher Scientific Invitrogen, Waltham, MA).
HEK-293T and A-172 cells were grown in Dulbecco’s

modified Eagle’s medium (Thermo Fisher Scientific Invitro-
gen, Waltham, MA) supplemented with 10% heat-inactivated
FBS and penicillin/streptomycin. HEK-293T (8 × 103) and A-
172 cells (1 × 103) were seeded in 200 μL on a 16-well E-plate.
The cells were grown for 48 h with added compounds at given
concentrations, and 0.5% DMSO was used as a vehicle control.
Cell viability was measured in real time using an xCELLigence
machine (RTCA xCELLigence, Agilent Technologies, Inc.,
Santa Clara, CA). The data at time points 0, 4, 8, 24, and 48 h
were extracted for further analysis. All cells were grown in a
humidified atmosphere at 37 °C in the presence of 5% CO2.

3.8. Quantification and Statistical Analysis. Enzymatic
assay and cell viability curve-fitting analysis and determination
of the IC50 values were performed using a Quest Graph IC50

Calculator (v.1, AAT Bioquest, Inc., Sunnyvale, CA). Statistical
significance in cell survival experiments was assessed using one-
way ANOVA and unpaired t test with the GraphPad Prism8
software (GraphPad Software, Inc., San Diego, CA). Results
were considered statistically significant at p < 0.05.

4. CONCLUSIONS

In the present work, we report the computer-aided develop-
ment of active inhibitors of the RNA m6A demethylase
ALKBH5. Using an m6A antibody-based enzymatic assay, two
low micromolar active inhibitors belonging to different
chemical scaffolds were identified among the in silico-predicted
compounds. The compounds 2-[(1-hydroxy-2-oxo-2-
phenylethyl)sulfanyl]acetic acid (3) and 4-{[(furan-2-yl)-
methyl]amino}-1,2-diazinane-3,6-dione (6) were applied on
cultures of different cancer cell lines to study the effects of
ALKBH5 inhibition on cell viability. Six cell lines were chosen
for this study: four leukemia cell lines (HL-60, CCRF-CEM,
K562, and Jurkat), one glioblastoma cell line (A-172), and
human embryonic kidney (HEK-293T) cell line. In the case of
three cell lines (HL-60, CCRF-CEM, and K562), the viability
of the cells was reduced from 100% down to about 40% by
both ALKBH5 inhibitors studied at low micromolar
concentrations. A much smaller effect was registered in the
case of Jurkat cells.
In conclusion, the ALKBH5 inhibitors reported in the

present work could be valuable for further deeper studies of the
RNA 6-N-methylation regulation both in normal and
pathological cells. Further optimization of the chemical
structure of the compounds may lead to high-potency
ALKBH5 inhibitors attractive for further drug development
against cancer.
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