189 research outputs found
Modelling planktic foraminifer growth and distribution using an ecophysiological multi-species approach
International audienceWe present an eco-physiological model reproducing the growth of eight foraminifer species (Neogloboquad-rina pachyderma, Neogloboquadrina incompta, Neoglobo-quadrina dutertrei, Globigerina bulloides, Globigeri-noides ruber, Globigerinoides sacculifer, Globigerinella si-phonifera and Orbulina universa). By using the main physiological rates of foraminifers (nutrition, respiration, symbi-otic photosynthesis), this model estimates their growth as a function of temperature, light availability, and food concentration. Model parameters are directly derived or calibrated from experimental observations and only the influence of food concentration (estimated via Chlorophyll-a concentration) was calibrated against field observations. Growth rates estimated from the model show positive correlation with observed abundance from plankton net data suggesting close coupling between individual growth and population abundance. This observation was used to directly estimate potential abundance from the model-derived growth. Using satellite data, the model simulate the dominant foraminifer species with a 70.5% efficiency when compared to a data set of 576 field observations worldwide. Using outputs of a biogeochemical model of the global ocean (PISCES) instead of satellite images as forcing variables gives also good results, but with lower efficiency (58.9%). Compared to core tops observations, the model also correctly reproduces the relative worldwide abundance and the diversity of the eight species when using either satellite data either PISCES results. This model allows prediction of the season and water depth at which each species has its maximum abundance potential. This offers promising perspectives for both an improved quantification of paleoceanographic reconstructions and for a better understanding of the foraminiferal role in the marine carbon cycle
Monte Carlo study of coaxially gated CNTFETs: capacitive effects and dynamic performance
Carbon Nanotube (CNT) appears as a promising candidate to shrink field-effect
transistors (FET) to the nanometer scale. Extensive experimental works have
been performed recently to develop the appropriate technology and to explore DC
characteristics of carbon nanotube field effect transistor (CNTFET). In this
work, we present results of Monte Carlo simulation of a coaxially gated CNTFET
including electron-phonon scattering. Our purpose is to present the intrinsic
transport properties of such material through the evaluation of electron
mean-free-path. To highlight the potential of high performance level of CNTFET,
we then perform a study of DC characteristics and of the impact of capacitive
effects. Finally, we compare the performance of CNTFET with that of Si nanowire
MOSFET.Comment: 15 pages, 14 figures, final version to be published in C. R. Acad.
Sci. Pari
Reactive oxygen species and cyclooxygenase 2-derived thromboxane A2 reduce angiotensin II type 2 receptor vasorelaxation in diabetic rat resistance arteries
Angiotensin II has a key role in the control of resistance artery tone and local blood flow. Angiotensin II possesses 2 main receptors. Although angiotensin II type 1 receptor is well known and is involved in the vasoconstrictor and growth properties of angiotensin II, the role of the angiotensin II type 2 receptor (AT2R) remains much less understood. Although AT2R stimulation induces vasodilatation in normotensive rats, it induces vasoconstriction in pathological conditions involving oxidative stress and cyclooxygenase 2 expression. Thus, we studied the influence of cyclooxygenase 2 on AT2R-dependent tone in diabetes mellitus. Mesenteric resistance arteries were isolated from Zucker diabetic fatty (ZDF) and lean Zucker rats and studied using in vitro using wire myography. In ZDF rats, AT2R-induced dilation was lower than in lean rats (11% versus 21% dilation). Dilation in ZDF rats returned to the control (lean rats) level after acute superoxide reduction (Tempol and apocynin), cyclooxygenase 2 inhibition (NS398), or thromboxane A(2) synthesis inhibition (furegrelate). Cyclooxygenase 2 expression and superoxide production were significantly increased in ZDF rat arteries compared with arteries of lean rats. After chronic treatment with Tempol, AT2R-dependent dilation was equivalent in ZDF and lean rats. Chronic treatment of ZDF rats with NS398 also restored AT2R-dependent dilation to the control (lean rats) level. Plasma thromboxane B(2) (thromboxane A(2) metabolite), initially high in ZDF rats, was decreased by chronic Tempol and by chronic NS398 to the level found in lean Zucker rats. Thus, in type 2 diabetic rats, superoxide and thromboxane A(2) reduced AT2R-induced dilation. These findings are important to take into consideration when choosing vasoactive drugs for diabetic patients
Chemistry at Boron: Synthesis and Properties of Red to Near-IR Fluorescent Dyes Based on Boron-Substituted Diisoindolomethene Frameworks
A general method for the synthesis of difluorobora-diisoindolomethene dyes with phenyl, p-anisole, or ethyl-thiophene substituents has been developed. The nature of the substituents allows modulation of the fluorescence from 650 to 780 nm. Replacement of the fluoro ligands by ethynyl-aryl or ethyl residues is facile using Grignard reagents. Several X-ray molecular structures have been determined, allowing establishment of structure–fluorescence relationships. When the steric crowding around the boron center is severe, the aromatic substituents α to the diisoindolomethene nitrogens are twisted out of coplanarity, and hypsochromic shifts are observed in the absorption and emission spectra. This shift reached 91 nm with ethyl substituents compared to fluoro groups. When ethynyl linkers are used, the core remains flat, and a bathochromic shift is observed. All the fluorophores exhibit relatively high quantum yields for emitters in the 650–800 nm region. When perylene or pyrene residues are connected to the dyes, almost quantitative energy transfer from them to the dye core occurs, providing large virtual Stokes shifts spanning from 8000 to 13 000 cm–1 depending on the nature of the dye. All the dyes are redox active, providing the Bodipy radical cation and anion in a reversible manner. Stepwise reduction or oxidation to the dication and dianion is feasible at higher potentials. We contend that the present work paves the way for the development of a new generation of stable, functionalized luminophores for bioanalytical applications
Sonochemical synthesis, characterization, and effects of temperature, power ultrasound and reaction time on the morphological properties of two new nanostructured mercury(II) coordination supramolecule compounds
Two new mercury(II) coordination supramolecular compounds (CSCs) (1D and 0D), [Hg(L)(I)] (1) and [Hg(L')(SCN)]·2HO (2) (L = 2-amino-4-methylpyridine and L' = 2,6-pyridinedicarboxlic acid), have been synthesized under different experimental conditions. Micrometric crystals (bulk) or nano-sized materials have been obtained depending on using the branch tube method or sonochemical irradiation. All materials have been characterized by field emission scanning electron microscope (FESEM), scanning electron microscopy (SEM), powder X-ray diffraction (PXRD) and FT-IR spectroscopy. Single crystal X-ray analyses on compounds 1 and 2 show that Hg ions are 4-coordinated and 5-coordinated, respectively. Topological analysis shows that the compound 1 and 2 have 2C1, sql net. The thermal stability of compounds 1 and 2 in bulk and nano-size has been studied by thermal gravimetric (TG), differential thermal analyses (DTA) for 1 and differential scanning calorimetry (DSC) for 2, respectively. Also, by changing counter ions were obtained various structures 1 and 2 (1D and 0D, respectively). The role of different parameters like power of ultrasound irradiation, reaction time and temperature on the growth and morphology of the nano-structures are studied. Results suggest that increasing power ultrasound irradiation and temperature together with reducing reaction time and concentration of initial reagents leads to a decrease in particle size
Simulating the growth and distribution of planktic foraminifer using an ecophysiological multi-species model
We present an eco-physiological model reproducing the growth of eight foraminifer species (Neogloboquadrina pachyderma, Neogloboquadrina incompta, Neogloboquadrina dutertrei, Globigerina bulloides, Globigerinoides ruber, Globigerinoides sacculifer, Globigerinella siphonifera and Orbulina universa). By using the main physiological rates of foraminifers (nutrition, respiration, symbiotic photosynthesis), this model estimates their growth as a function of temperature, light availability, and food concentration. Model parameters are directly derived or calibrated from experimental observations and only the influence of food concentration (estimated via chl-a concentration) was calibrated against field observations. Growth rates estimated from the model show positive correlation with observed abundance from plankton net data suggesting close coupling between individual and assemblage growth rates. This observation was used to directly estimate potential abundance from the model-derived growth. Using satellite data, the model simulate the dominant foraminifer with a 70.5% efficiency when compared to a data set of 576 field observations worldwide. Using outputs of a biogeochemical model of the global ocean (PISCES) instead of satellite images as forcing variables gives also good results, but with lower efficiency (58.9%). The model also correctly reproduces the relative worldwide abundance and the diversity of the eight species when compared to core tops observations both using satellite and PISCES data. This model allows prediction of the season and water depth at which each species has its highest growth potential. This offers promising perspectives for both an improved quantification of paleoceanographic reconstructions and for a better understanding of the foraminiferal role in the marine carbon cycle
Smooth muscle specific Rac1 deficiency induces hypertension by preventing p116RIP3-dependent RhoA inhibition
BACKGROUND: Increasing evidence implicates overactivation of RhoA as a critical component of the pathogenesis of hypertension. Although a substantial body of work has established that Rac1 functions antagonize RhoA in a broad range of physiological processes, the role of Rac1 in the regulation of vascular tone and blood pressure is not fully elucidated. METHODS AND RESULTS: To define the role of Rac1 in vivo in vascular smooth muscle cells (vSMC), we generated smooth muscle (SM)-specific Rac1 knockout mice (SM-Rac1-KO) and performed radiotelemetric blood pressure recordings, contraction measurements in arterial rings, vSMC cultures and biochemical analyses. SM-Rac1-KO mice develop high systolic blood pressure sensitive to Rho kinase inhibition by fasudil. Arteries from SM-Rac1-KO mice are characterized by a defective NO-dependent vasodilation and an overactivation of RhoA/Rho kinase signaling. We provide evidence that Rac1 deletion-induced hypertension is due to an alteration of cGMP signaling resulting from the loss of Rac1-mediated control of type 5 PDE activity. Consequently, cGMP-dependent phosphorylation and binding of RhoA with its inhibitory partner, the phosphatase-RhoA interacting protein (p116(RIP3)), are decreased. CONCLUSIONS: Our data reveal that the depletion of Rac1 in SMC decreases cGMP-dependent p116(RIP3)/RhoA interaction and the subsequent inhibition of RhoA signaling. Thus, we unveil an in vivo role of Rac1 in arterial blood pressure regulation and a new pathway involving p116(RIP3) that contributes to the antagonistic relationship between Rac1 and RhoA in vascular smooth muscle cells and their opposite roles in arterial tone and blood pressure
- …