1,381 research outputs found
The ATLAS calorimeter preamplifier: performance, radiation damage, electrostatic discharge resistance, reliability and manufacturing issues
LAPAS: A SiGe Front End Prototype for the Upgraded ATLAS LAr Calorimeter
We have designed and fabricated a very low noise preamplifier and shaper to replace the existing ATLAS Liquid Argon readout for use at the Large Hadron Collider upgrade (sLHC). IBM’s 8WL 130nm SiGe process was chosen for it’s radiation tolerance, low noise bipolar NPN devices, wide voltage rand and potential use in other sLHC detector subsystems. Although the requirements for the final design can not be set at this time, the prototype was designed to accommodate a 16 bit dynamic range. This was accomplished by using a single stage, low noise, wide dynamic range preamp followed by a dual range shaper. The low noise of the preamp is made possible by the low base spreading resistance of the Silicon Germanium NPN bipolar transistors. The relatively high voltage rating of the NPN transistors is exploited to allow a gain of 650V/A in the preamplifier which eases the input voltage noise requirement on the shaper. Each shaper stage is designed as a cascaded differential operational amplifier doublet with a common mode operating point regulated by an internal feedback loop. Measurement of the fabricated circuits indicates their performance is consistent with the desig
High Radiation Resistant DC-DC Converter Regulators for use in Magnetic fields for LHC High Luminosity Silicon Trackers
For more efficient power transport to the electronics embedded inside large colliding beam detectors, we explore the feasibility of supplying higher DC voltage and using local DC-DC conversion to 1.3 V (or lower, depending upon on the lithography of the embedded electronics) using switch mode regulators located very close to the front end electronics. These devices will be exposed to high radiation and high magnetic fields, 10 – 100 Mrads and 2 - 4 Tesla at the SLHC
Recommended from our members
Optically Based Charge Injection System for Ionization Detectors
An optically coupled charge injection system for ionization based radiation detectors which allows a test charge to be injected without the creation of ground loops has been developed. An ionization like signal from an external source is brought into the detector through an optical fiber and injected into the electrodes by means of a photodiode. As an application example, crosstalk measurements on a liquid Argon electromagnetic calorimeter readout electrodes were performed
Characterization of the coherent noise, electromagnetic compatibility and electromagnetic interference of the ATLAS EM calorimeter Front End Board
Progress on DC-DC Converters for a Silicon Tracker for the sLHC Upgrade
There is a need for DC-DC converters which can operate in the extremely harsh environment of the sLHC Si Tracker. The environment requires radiation qualification to a total ionizing radiation dose of 50 Mrad and a displacement damage fluence of 5 x 1014 /cm2 of 1 MeV equivalent neutrons. In addition a static magnetic field of 2 Tesla or greater prevents the use of any magnetic components or materials. In February 2007 an Enpirion EN5360 was qualified for the sLHC radiation dosage but the converter has an input voltage limited to a maximum of 5.5V. From a systems point of view this input voltage was not sufficient for the application. Commercial LDMOS FETs have developed using a 0.25 μm process which provided a 12 volt input and were still radiation hard. These results are reported here and in previous papers. Plug in power cards with ×10 voltage ratio are being developed for testing the hybrids with ABCN chips. These plug-in cards have air coils but use commercial chips that are not designed to be radiation hard. This development helps in evaluating system noise and performance. GaN FETs are tested for radiation hardness to ionizing radiation and displacement damage and preliminary results are given
Characterization of an Ionization Readout Tile for nEXO
A new design for the anode of a time projection chamber, consisting of a
charge-detecting "tile", is investigated for use in large scale liquid xenon
detectors. The tile is produced by depositing 60 orthogonal metal
charge-collecting strips, 3~mm wide, on a 10~\si{\cm} 10~\si{\cm}
fused-silica wafer. These charge tiles may be employed by large detectors, such
as the proposed tonne-scale nEXO experiment to search for neutrinoless
double-beta decay. Modular by design, an array of tiles can cover a sizable
area. The width of each strip is small compared to the size of the tile, so a
Frisch grid is not required. A grid-less, tiled anode design is beneficial for
an experiment such as nEXO, where a wire tensioning support structure and
Frisch grid might contribute radioactive backgrounds and would have to be
designed to accommodate cycling to cryogenic temperatures. The segmented anode
also reduces some degeneracies in signal reconstruction that arise in
large-area crossed-wire time projection chambers. A prototype tile was tested
in a cell containing liquid xenon. Very good agreement is achieved between the
measured ionization spectrum of a Bi source and simulations that
include the microphysics of recombination in xenon and a detailed modeling of
the electrostatic field of the detector. An energy resolution =5.5\%
is observed at 570~\si{keV}, comparable to the best intrinsic ionization-only
resolution reported in literature for liquid xenon at 936~V/\si{cm}.Comment: 18 pages, 13 figures, as publishe
Energy Linearity and Resolution of the ATLAS Electromagnetic Barrel Calorimeter in an Electron Test-Beam
A module of the ATLAS electromagnetic barrel liquid argon calorimeter was
exposed to the CERN electron test-beam at the H8 beam line upgraded for
precision momentum measurement. The available energies of the electron beam
ranged from 10 to 245 GeV. The electron beam impinged at one point
corresponding to a pseudo-rapidity of eta=0.687 and an azimuthal angle of
phi=0.28 in the ATLAS coordinate system. A detailed study of several effects
biasing the electron energy measurement allowed an energy reconstruction
procedure to be developed that ensures a good linearity and a good resolution.
Use is made of detailed Monte Carlo simulations based on Geant which describe
the longitudinal and transverse shower profiles as well as the energy
distributions. For electron energies between 15 GeV and 180 GeV the deviation
of the measured incident electron energy over the beam energy is within 0.1%.
The systematic uncertainty of the measurement is about 0.1% at low energies and
negligible at high energies. The energy resolution is found to be about 10%
sqrt(E) for the sampling term and about 0.2% for the local constant term
Radiation hardness studies of a 130 nm Silicon Germanium BiCMOS technology with a dedicated ASIC
We present the radiation hardness studies on the bipolar devices of the 130 nm 8WL Silicon Germanium (SiGe) BiCMOS technology from IBM. This technology has been proposed as one of the candidates for the Front-End (FE) readout chip of the upgraded Inner Detector (ID) and the Liquid Argon Calorimeter (LAr) of the ATLAS Upgrade experiment. After neutron irradiations, devices remain at acceptable performances at the maximum radiation levels expected in the Si tracker and LAr calorimeter
- …
