76 research outputs found

    Population Genetic Structure of the Grasshopper Eyprepocnemis plorans in the South and East of the Iberian Peninsula

    Get PDF
    The grasshopper Eyprepocnemis plorans subsp. plorans harbors a very widespread polymorphism for supernumerary (B) chromosomes which appear to have arisen recently. These chromosomes behave as genomic parasites because they are harmful for the individuals carrying them and show meiotic drive in the initial stages of population invasion. The rapid increase in B chromosome frequency at intrapopulation level is thus granted by meiotic drive, but its spread among populations most likely depends on interpopulation gene flow. We analyze here the population genetic structure in 10 natural populations from two regions (in the south and east) of the Iberian Peninsula. The southern populations were coastal whereas the eastern ones were inland populations located at 260–655 m altitude. The analysis of 97 ISSR markers revealed significant genetic differentiation among populations (average GST = 0.129), and the Structure software and AMOVA indicated a significant genetic differentiation between southern and eastern populations. There was also significant isolation by distance (IBD) between populations. Remarkably, these results were roughly similar to those found when only the markers showing low or no dropout were included, suggesting that allelic dropout had negligible effects on population genetic analysis. We conclude that high gene flow helped this parasitic B chromosome to spread through most of the geographical range of the subspecies E. plorans plorans.This study was supported by a grant from the Spanish Ministerio de Ciencia e Innovación (CGL2009-11917), and was partially performed by FEDER funds. MIMP was supported by a fellowship (FPU) from the Spanish Ministerio de Ciencia e Innovación

    Genetic Patterns of Domestication in Pigeonpea (Cajanus cajan (L.) Millsp.) and Wild Cajanus Relatives

    Get PDF
    Pigeonpea (Cajanus cajan) is an annual or short-lived perennial food legume of acute regional importance, providing significant protein to the human diet in less developed regions of Asia and Africa. Due to its narrow genetic base, pigeonpea improvement is increasingly reliant on introgression of valuable traits from wild forms, a practice that would benefit from knowledge of its domestication history and relationships to wild species. Here we use 752 single nucleotide polymorphisms (SNPs) derived from 670 low copy orthologous genes to clarify the evolutionary history of pigeonpea (79 accessions) and its wild relatives (31 accessions). We identified three well-supported lineages that are geographically clustered and congruent with previous nuclear and plastid sequence-based phylogenies. Among all species analyzed Cajanus cajanifolius is the most probable progenitor of cultivated pigeonpea. Multiple lines of evidence suggest recent gene flow between cultivated and non-cultivated forms, as well as historical gene flow between diverged but sympatric species. Evidence supports that primary domestication occurred in India, with a second and more recent nested population bottleneck focused in tropical regions that is the likely consequence of pigeonpea breeding. We find abundant allelic variation and genetic diversity among the wild relatives, with the exception of wild species from Australia for which we report a third bottleneck unrelated to domestication within India. Domesticated C. cajan possess 75% less allelic diversity than the progenitor clade of wild Indian species, indicating a severe “domestication bottleneck” during pigeonpea domestication

    A haplotype map of allohexaploid wheat reveals distinct patterns of selection on homoeologous genomes

    Get PDF
    BACKGROUND: Bread wheat is an allopolyploid species with a large, highly repetitive genome. To investigate the impact of selection on variants distributed among homoeologous wheat genomes and to build a foundation for understanding genotype-phenotype relationships, we performed population-scale re-sequencing of a diverse panel of wheat lines. RESULTS: A sample of 62 diverse lines was re-sequenced using the whole exome capture and genotyping-by-sequencing approaches. We describe the allele frequency, functional significance, and chromosomal distribution of 1.57 million single nucleotide polymorphisms and 161,719 small indels. Our results suggest that duplicated homoeologous genes are under purifying selection. We find contrasting patterns of variation and inter-variant associations among wheat genomes; this, in addition to demographic factors, could be explained by differences in the effect of directional selection on duplicated homoeologs. Only a small fraction of the homoeologous regions harboring selected variants overlapped among the wheat genomes in any given wheat line. These selected regions are enriched for loci associated with agronomic traits detected in genome-wide association studies. CONCLUSIONS: Evidence suggests that directional selection in allopolyploids rarely acted on multiple parallel advantageous mutations across homoeologous regions, likely indicating that a fitness benefit could be obtained by a mutation at any one of the homoeologs. Additional advantageous variants in other homoelogs probably either contributed little benefit, or were unavailable in populations subjected to directional selection. We hypothesize that allopolyploidy may have increased the likelihood of beneficial allele recovery by broadening the set of possible selection targets

    Pigeonpea

    Get PDF
    Pigeonpea was labeled as an orphan crop but is now a trendy and pacesetter, with ample genetic and genomic information becoming available in recent times. It is now possible to cross wild relatives not only from the Cajanus group placed in the secondary and tertiary gene pool but also the related genera placed in the quaternary gene pool. This is no small achievement for a legume which is an important crop of Asia and Africa and plays a major role in the diet of majority of the people of this region. The need of the hour is further committed research on wide crosses in pigeonpea

    Modern Genomic Tools for Pigeonpea Improvement: Status and Prospects

    Get PDF
    Pigeonpea owing to its ability to sustain harsh environment and limited input/water requirement remains an excellent remunerative crop in the face of increasing climatic adversities. With nearly 70% share in global pigeonpea production, India is the leading pigeonpea producing country. Since the mid-1900s, constant research efforts directed to improve yield and resistance levels of pigeonpea have resulted in the development and deployment of several commercially accepted cultivars in India, accommodating into diverse agro-climatic zones. However, the crop productivity needs incremental improvements in order to meet the growing nutritional demands, especially in developing countries like India where pigeonpea forms a dominant part of vegetarian diet. Empowering crop improvement strategies with genomic tool kit is imperative to attain the project gains in crop yield. In the context, adoption of next-generation sequencing (NGS) technology has helped establish a wide range of genomic resources to support pigeonpea breeding, and the existing molecular tool kit includes genome-wide genetic markers, transcriptome/genome assemblies, and candidate genes/QTLs for target traits. Similarly, availability of whole mitochondrial genome sequence and derived DNA markers is immensely relevant in order to furthering the understanding of cytoplasmic male sterility (CMS) system and hybrid breeding. This chapter covers the progress of developing modern genomic resources in pigeonpea and highlights their vital role in designing future crop breeding schemes

    Modulation of GmFAD3 expression alters responses to abiotic stress in soybean

    Get PDF
    FAD3 play important roles in modulating membrane fluidity in response to various abiotic stresses. However, a comprehensive analysis of FAD3 in drought, salinity and heat stress tolerance is lacking in soybean. The present study assessed the functional role of fatty acid desaturase 3 to abiotic stress responses in soybean. We used Bean Pod Mottle Virus -based vector to alter expression of Glycine max omega-3 fatty acid desaturase . Higher levels of recombinant BPMV-GmFAD3 transcripts were detected in overexpressing soybean plants. Overexpression of GmFAD3 in soybean resulted in increased levels of jasmonic acid and higher expression of GmWRKY54 as compared to mock-inoculated, vector-infected and FAD3-silenced soybean plants under drought and salinity stress conditions. FAD3 overexpressing plants showed higher levels of chlorophyll content, leaf SPAD value, relative water content, chlorophyll fluorescence, transpiration rate, carbon assimilation rate, proline content and also cooler canopy under drought and salinity stress conditions as compared to mock-inoculated, vector-infected and FAD3-silenced soybean plants. Results from current study revealed that GmFAD3 overexpressing soybean plants exhibited drought and salinity stress tolerance although tolerance to heat stress was reduced. On the other hand, soybean plants silenced for GmFAD3 exhibited tolerance to heat stress, but were vulnerable to drought and salinity stres

    Not Available

    No full text
    Not AvailableCultivated peanut is an allotetraploid with an AB-genome. In order to learn more of the genomic structure of peanut, we characterized and studied the evolution of a retrotransposon originally isolated from a resistance gene analog (RGA)-containing bacterial artificial chromosome (BAC) clone. It is a moderate copy number Ty1-copia retrotransposon from the Bianca lineage and we named it Matita. Fluorescent in situ hybridization (FISH) experiments showed that Matita is mainly located on the distal regions of chromosome arms and is of approximately equal frequency on both A- and B-chromosomes. Its chromosome-specific hybridization pattern facilitates the identification of individual chromosomes, a useful cytogenetic tool considering that chromosomes in peanut are mostly metacentric and of similar size. Phylogenetic analysis of Matita elements, molecular dating of transposition events, and an estimation of the evolutionary divergence of the most probable A- and B-donor species suggest that Matita underwent its last major burst of transposition activity at around the same time of the A- and B-genome divergence about 3.5 million years ago. By probing BAC libraries with overgos probes for Matita, resistance gene analogues, and single- or low-copy genes, it was demonstrated that Matita is not randomly distributed in the genome but exhibits a significant tendency of being more abundant near resistance gene homologues than near single-copy genes. The described work is a further step towards broadening the knowledge on genomic and chromosomal structure of peanut and on its evolution.University of Georgia, US

    QTLomics in Soybean: a way forward for translational genomics and breeding

    Get PDF
    Not AvailableNot AvailableNot Availabl
    corecore