643 research outputs found

    Sensitivity of the Atlantic meridional overturning circulation to South Atlantic freshwater anomalies

    No full text
    The sensitivity of the Atlantic Meridional Overturning Circulation (AMOC) to changes in basin integrated net evaporation is highly dependent on the zonal salinity contrast at the southern border of the Atlantic. Biases in the freshwater budget strongly affect the stability of the AMOC in numerical models. The impact of these biases is investigated, by adding local anomaly patterns in the South Atlantic to the freshwater fluxes at the surface. These anomalies impact the freshwater and salt transport by the different components of the ocean circulation, in particular the basin-scale salt-advection feedback, completely changing the response of the AMOC to arbitrary perturbations. It is found that an appropriate dipole anomaly pattern at the southern border of the Atlantic Ocean can collapse the AMOC entirely even without a further hosing. The results suggest a new view on the stability of the AMOC, controlled by processes in the South Atlantic. <br/

    Reply to Comment on "Cosmic rays, carbon dioxide, and climate"

    Get PDF
    In our analysis [Rahmstorf et al., 2004], we arrived at two main conclusions: the data of Shaviv and Veizer [2003] do not show a significant correlation of cosmic ray flux (CRF) and climate, and the authors' estimate of climate sensitivity to CO2 based on a simple regression analysis is questionable. After careful consideration of Shaviv and Veizer's comment, we want to uphold and reaffirm these conclusions. Concerning the question of correlation, we pointed out that a correlation arose only after several adjustments to the data, including shifting one of the four CRF peaks and stretching the time scale. To calculate statistical significance, we first need to compute the number of independent data points in the CRF and temperature curves being correlated, accounting for their autocorrelation. A standard estimate [Quenouille, 1952] of the number of effective data points is urn:x-wiley:00963941:media:eost14930:eost14930-math-0001 where N is the total number of data points and r1, r2 are the autocorrelations of the two series. For the curves of Shaviv and Veizer [2003], the result is NEFF = 4.8. This is consistent with the fact that these are smooth curves with four humps, and with the fact that for CRF the position of the four peaks is determined by four spiral arm crossings or four meteorite clusters, respectively; that is, by four independent data points. The number of points that enter the calculation of statistical significance of a linear correlation is (NEFF− 2), since any curves based on only two points show perfect correlation; at least three independent points are needed for a meaningful result

    Dynamic sea level changes following changes in the thermohaline circulation

    Get PDF
    Using the coupled climate model CLIMBER-3a, we investigate changes in sea surface elevation due to a weakening of the thermohaline circulation (THC). In addition to a global sea level rise due to a warming of the deep sea, this leads to a regional dynamic sea level change which follows quasi-instantaneously any change in the ocean circulation. We show that the magnitude of this dynamic effect can locally reach up to ~1m, depending on the initial THC strength. In some regions the rate of change can be up to 20-25 mm/yr. The emerging patterns are discussed with respect to the oceanic circulation changes. Most prominent is a south-north gradient reflecting the changes in geostrophic surface currents. Our results suggest that an analysis of observed sea level change patterns could be useful for monitoring the THC strength.Comment: Climate Dynamics (2004), submitted. See also http://www.pik-potsdam.de/~ander

    Climate tipping points — too risky to bet against

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Research via the DOI in this recordThe growing threat of abrupt and irreversible climate changes must compel political and economic action on emissions.Royal SocietyLeverhulme Trus

    The effect of additive noise on dynamical hysteresis

    Get PDF
    We investigate the properties of hysteresis cycles produced by a one-dimensional, periodically forced Langevin equation. We show that depending on amplitude and frequency of the forcing and on noise intensity, there are three qualitatively different types of hysteresis cycles. Below a critical noise intensity, the random area enclosed by hysteresis cycles is concentrated near the deterministic area, which is different for small and large driving amplitude. Above this threshold, the area of typical hysteresis cycles depends, to leading order, only on the noise intensity. In all three regimes, we derive mathematically rigorous estimates for expectation, variance, and the probability of deviations of the hysteresis area from its typical value.Comment: 30 pages, 5 figure
    • 

    corecore