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The e�ect of additive noise on dynamical hysteresis

Nils Berglund and Barbara Gentz

Abstract

We investigate the properties of hysteresis cycles produced by a one-dimensional, pe-

riodically forced Langevin equation. We show that depending on amplitude and fre-

quency of the forcing and on noise intensity, there are three qualitatively di�erent

types of hysteresis cycles. Below a critical noise intensity, the random area enclosed

by hysteresis cycles is concentrated near the deterministic area, which is di�erent for

small and large driving amplitude. Above this threshold, the area of typical hysteresis

cycles depends, to leading order, only on the noise intensity. In all three regimes, we

derive mathematically rigorous estimates for expectation, variance, and the probabil-

ity of deviations of the hysteresis area from its typical value.

Date. July 27, 2001.

2000 MSC. 37H20 (primary), 60H10, 34C55, 34E15, 82C31 (secondary).

Keywords and phrases. dynamical systems, singular perturbations, hysteresis cycles, scaling laws,

non-autonomous stochastic di�erential equations, double-well potential, pathwise description, con-

centration of measure.

1 Introduction

For a long time, hysteresis was considered as a purely static phenomenon. As a conse-

quence, it has been modeled by various integral operators relating the �output� of the

system to its �input�, for operators not depending on the speed of variation of the input

(see for instance [May] and [MNZ] for reviews).

This situation changed drastically a decade ago, when Rao and coauthors published a

numerical study of the e�ect of the input's frequency on shape and area of hysteresis cycles

[RKP]. They proposed in particular that the area A of a hysteresis cycle, which measures

the energy dissipation per period, should obey a scaling law of the form

A ' A�"� (1.1)

for small amplitude A and frequency " of the periodic input (e. g. the magnetic �eld),

and some model-dependent exponents � and �. This work triggered a substantial amount

of numerical, experimental and theoretical studies, trying to establish the validity of the

scaling law (1.1) for various systems, a problem which has become known as dynamical

hysteresis.

The �rst model investigated in [RKP] is a Langevin partial di�erential equation for the

spatially extended, N -component order parameter (e. g. the magnetization), in a (�2)2-
potential with O(N)-symmetry, in the limit N ! 1. Their numerical experiments

suggested that (1.1) holds with � ' 2=3 and � ' 1=3. Various theoretical arguments

[DT, SD, ZZ] indicate that the scaling law should be valid, but with � = � = 1=2.
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The second model considered in [RKP] is an Ising model with Monte-Carlo dynamics.

Here the situation is not so clear. Di�erent numerical simulations (for instance [LP, AC,

ZZL]) suggested scaling laws with widely di�erent exponents. More careful simulations

[SRN], however, showed that the behaviour of hysteresis cycles depends in a complicated

way on the mechanism of magnetization reversal, and no universal scaling law of the

form (1.1) should be expected. Rigorous results on hysteresis in the Ising model are only

available for discontinuous reversal (quenching) of the �eld [SS].

A third kind of models for which scaling laws of hysteresis cycles have been investigated

belong to the mean �eld class, and include the Curie�Weiss model. A one-dimensional

deterministic equation modeling a bistable laser, and being equivalent to the equation

of motion of an overdamped particle in a periodically forced double-well potential, was

considered in [JGRM]. The area of hysteresis cycles was shown to obey the scaling law

A ' A0 + "
2=3 (1.2)

for su�ciently large driving amplitude. A similar equation governs the dynamics of the

magnetization in the Curie�Weiss model, in the limit of in�nite system size. This equation

was examined in [TO], where it was shown that the behaviour changes drastically when the

amplitude of the forcing crosses a threshold, a phenomenon they termed �dynamic phase

transition�.

As pointed out in [Rao], the di�erence between the scaling laws (1.1) and (1.2) can be

attributed to the existence of a potential barrier for the one-dimensional order parameter,

which is absent in higher dimensions. The deterministic equation, however, neglects both

thermal �uctuations and the �nite system size, whose e�ects may be modeled by an additive

white noise (see for instance [Mar]). Noise, however, may help to overcome the potential

barrier and change the scaling law.

The aim of the present work is to give a rigorous characterization of the e�ect of additive

white noise on scaling properties of hysteresis cycles. For de�niteness, we shall consider

the case of a Ginzburg�Landau potential, i. e., the stochastic di�erential equation

dxs = � @

@x

h
1

4
x
4
s �

1

2
x
2
s � �("s)xs

i
ds+ � dWs; (1.3)

where Ws is a standard Brownian motion, and

�("s) = �A cos(2�"s); A > 0: (1.4)

However, our results depend only on certain qualitative features of the bifurcation diagram

and the proofs carry over to a more general setup as in [BG1, BG2].

In the deterministic case � = 0, it is known [TO, JGRM, BK] that

� for A < �c + O(") (where �c = 2=(3
p
3) is such that the potential has two wells if

and only if j�j < �c), solutions of (1.3) are attracted by hysteresis cycles (one for each

potential well) enclosing an area of order ", and with nonzero mean;

� for A > �c + O("), solutions are attracted by a hysteresis cycle enclosing an area of

order A0+"
2=3(A��c)1=3, where the static hysteresis area A0 is a constant, depending

only on the geometry of the equilibrium branches.

For positive �, the area A enclosed by a trajectory during one period is a random

variable, depending on the realization Ws(!) of the Brownian motion. Our aim is to

characterize the distribution of A as a function of the parameters ", � and a0 = A � �c.
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Figure 1. The di�erent regimes as a function of amplitudeA = �c+a0 and noise intensity

�, for a given value of the frequency ".

It turns out that the distribution is usually concentrated around a deterministic reference

value. We determine the expectation and variance of A. Furthermore, we estimate the

behaviour of deviations of A from its reference value.

One of the main results is the existence of a threshold value for the noise intensity �,

depending on A and ": Below this threshold, the area is concentrated near the correspond-

ing deterministic value, while above the threshold, it depends, to leading order, only on

the noise intensity and is slightly smaller than A0.

There are thus three parameter regimes, as shown in Figure 1, with qualitatively dif-

ferent behaviour of the area A.
� In Case I, the small amplitude regime, the area is close to the deterministic value of

order ". There is a further subdivision into Case Ia, where the distribution of A is

close to a Gaussian with standard deviation �
p
" smaller than ", and Case Ib, where

the distribution is more spread out (see Theorem 2.3 and Figure 3).

� In Case II, the large amplitude regime, the area is concentrated near the deterministic

value of order A0 + ("
p
a0 )

2=3. In Case IIa, the distribution is close to a Gaussian

with standard deviation of order �("
p
a0)

1=6. In Case IIb, we can only show that A is

concentrated in an interval of width ("
p
a0 )

2=3 (see Theorem 2.4 and Figure 4).

� In Case III, the large noise regime, A is likely to be close to a reference area Â of

order A0 � �
4=3, which is smaller than the static hysteresis area. This is due to the

noise driving x over the potential barrier before it becomes minimal or vanishes. The

deviation ��4=3 does not depend on " or A (see Theorem 2.5 and Figure 5).

Hysteresis does not only occur in ferromagnets and lasers, but also in mechanical sys-

tems displaying relaxation oscillations, such as the Van der Pol oscillator. Here additive

noise can also have the e�ect of enabling jumps between stable states separated by a poten-

tial barrier [Fr]. Simple climate models can also display hysteresis, as has been observed for

instance for the Atlantic thermohaline circulation [Rah, Mo]. In these systems, the e�ect
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of small scale degrees of freedom is represented by additive noise. Our results describe

quantitatively how noise may cause the system to switch to another equilibrium state, at

an earlier time than expected from the deterministic approximation.

We presented our results in detail in Section 2. Section 3 contains a short description of

the deterministic dynamics, while the remaining sections present the proofs for the various

parameter regimes.

Acknowledgements:

B.G. thanks the Forschungsinstitut für Mathematik at ETH Zürich and its director Pro-

fessor Marc Burger for kind hospitality.

2 Results

We consider the non-autonomous SDE

dxs = F (xs; �("s)) ds+ � dWs; (2.1)

where F derives from a periodically forced double-well potential and Ws is a standard

Brownian motion on some probability space (
;F ;P). For de�niteness, we shall consider
the case

F (x; �) = x� x
3 + � = � @

@x

h1
4
x
4 � 1

2
x
2 � �x

i
(2.2)

�("s) = �A cos(2�"s); A > 0: (2.3)

We introduce the notation Pt0;x0 for the law of the process fxtgt>t0 , starting in x0 at time

t0, and use E t0 ;x0 to denote expectations with respect to Pt0;x0 . Note that the stochastic

process fxtgt>t0 is an inhomogeneous Markov process.

Before turning to the precise statements of our results, let us introduce some notations.

We shall use

� y _ z and y ^ z to denote the maximum or minimum, respectively, of two real numbers

y and z.

� If '(t; ") and  (t; ") are de�ned for small " and for t in a given interval I , we write

 (t; ") � '(t; ") if there exist strictly positive constants c� such that c�'(t; ") 6
 (t; ") 6 c+'(t; ") for all t 2 I and all su�ciently small ". The constants c� are

understood to be independent of t and " (and hence also independent of small quantities

like � and, possibly, a0, which we consider as functions of ").

� By g(u) = O(u) we indicate that there exist Æ > 0 and K > 0 such that g(u) 6 Ku

for all u 2 [0; Æ], where Æ and K of course do not depend on " or on the other small

parameters a0 and �.

� Let I be an interval. The notation 1I(x) is used for the indicator function, taking value

1 if x 2 I and 0 otherwise.

Finally, let us point out that most estimates hold for small enough " only, and often only

for P-almost all ! 2 
. We will stress these facts only where confusion might arise.

Let us �rst consider the deterministic case � = 0. It is convenient to introduce the slow

time t = "s, and rewrite (2.1) for � = 0 as

"
dxt

dt
= F (xt; �(t)): (2.4)

4



X
?
�

(�)

X
?

+(�)

�c �

xc

x

x
per;+

t

�

x

X
?

0 (�)

x
per

t

Figure 2. Equilibrium branches of F (heavy curves) and periodic solutions of the deter-

ministic equation (light curves), for A < �c (left) and A > �c (right). For A < �c + O("),

the enclosed area is of order " while for A > �c+O("), it is of order A0+ "2=3(A��c)
1=3.

We start by discussing some properties of this equation, which will be summarized in

Theorem 2.2 below. As " goes to zero, solutions of (2.4) are known to approach equilibrium

branches of F , that is, solutions of F (x; �) = 0 (see Figure 2). Let �c = 2=(3
p
3).

� For j�j < �c, F has three equilibrium branches X?
�(�) < X

?
0(�) < X

?
+(�), where

X?
�(�) are stable equilibria and X?

0(�) is an unstable equilibrium of the associated

frozen system _x = F (x; �).

� At � = ��c, the branches X?
+(�) and X

?
0(�) undergo a saddle�node bifurcation, and

X
?
+(��c) = X

?
0(��c) = xc := 1=

p
3.

� For � < ��c, X?�(�) is the only equilibrium branch.

� A similar bifurcation occurs at � = +�c, where X
?
�(�c) = X

?
0(�c) = �xc.

� For � > �c, X
?
+(�) is the only equilibrium branch.

We can thus expect a qualitative di�erence, in the limit "! 0, between the regime A < �c,

where F always derives from a double-well potential, and the regime A > �c, where F has

only one equilibrium part of the time.

De�nition 2.1. Let x
per;"
t be a periodic solution of (2.4). We say that this solution does

not display hysteresis if there exists a continuous function � 7! X
?(�) such that

lim
"!0

x
per;"
t = X

?(�(t)): (2.5)

If no such function exists, we say that x
per;"
t displays hysteresis.

If A < �c, solutions starting near a stable equilibrium branch X?
+(�) or X

?�(�) will
remain close to that branch, and relation (2.5) holds with X

?(�) = X
?
+(�) or X?

�(�),
depending on the initial condition. If A > �c, however, it turns out that

lim
"!0

x
per;"
t =

(
X

?
+(�(t)) if �(t) > �c or if �(t) > ��c and �0(t) < 0

X?
�(�(t)) otherwise.

(2.6)

Thus the solution displays hysteresis since the instantaneous value of � alone does not

su�ce to determine the state of the system in the adiabatic limit. This so-called hysteresis
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cycle can be characterized by its area, de�ned as

A(") = �
Z 1=2

�1=2
x
per;"
t �

0(t) dt: (2.7)

If A < �c, we have lim"!0A(") = 0, while for A > �c,

lim
"!0

A(") = A0 :=

Z �c

��c
(X?

+(�)�X?
�(�)) d� =

3

2
: (2.8)

The situation is thus relatively simple in the limit " ! 0. Since in practice, however, the

variation of � will not be in�nitely slow, it is important to understand what happens for

small but positive values of ". We summarize the necessary facts in the following theorem.

Theorem 2.2 (Deterministic Case). There exist constants 1 > 0 > 0 such that the

following behaviour holds for su�ciently small ".

� If a0 = A��c 6 0", Equation (2.4) has exactly two stable periodic solutions x
per;+
t and

x
per;�
t , and one unstable periodic solution x

per;0
t . These solutions track, respectively, the

equilibrium branches X?
�(�(t)) and X

?
0(�(t)) at a distance not larger than O("ja0j�1=2^p

"), and enclose an area

A(") � "A: (2.9)

All solutions which do not start on x
per;0
t are attracted either by x

per;+
t or by x

per;�
t .

� If a0 = A � �c > 1", Equation (2.4) admits exactly one periodic solution x
per
t . This

solution is stable, satis�es (2.6) in the adiabatic limit, and encloses an area A(") sat-
isfying

A(")� A0 � "
2=3
a
1=3
0 : (2.10)

In the case where a0 is of order 1, the scaling law (2.10) was �rst obtained in [JGRM].

We outline the proof of Theorem 2.2 in Section 3. Note that in the transition zone 0" <

a0 < 1", the situation is more complicated, since more than two stable periodic orbits can

coexist [TO, BK].

Let us now return to the stochastic di�erential equation (2.1). In slow time t = "s, it

can be written as

dxt =
1

"
F (xt; �(t)) dt+

�p
"
dWt: (2.11)

Let us �x, say, t0 = �1=2 as initial time, and some x0 > 0 as initial condition, such that the

solution xdett of the deterministic equation (2.4) with the same initial condition is attracted

by x
per;+
t or x

per
t , respectively. We denote by xt(!) the solution of the SDE (2.11) with

initial condition xt0 = x0 for a given realization ! of the Brownian motion, and associate

with it the area

A("; �;!) = �
Z 1=2

�1=2
xt(!)�

0(t) dt: (2.12)

Note that A("; �;!) also depends on a0 = A � �c. We do not stress this dependence here

but consider a0 as a (possibly constant) function of ". Of course, since xt(!) is not periodic

in general, the integral (2.12) does not represent the area of enclosed by a closed curve.

However it is still physically meaningful since it describes the energy dissipation if x and �

are thermodynamically conjugate variables. One can check that for jx0�xper;+t0
j su�ciently

6



� t

x x

Figure 3. A sample path of Equation 2.1 for " = 0:001, � = 0:05 and a0 = �0:1,

corresponding to the small amplitude regime.

small (but still of order one), jxdett � x
per;+
t j decreases exponentially fast in (t� t0)=" and

thus A("; 0) still behaves like (2.9). The same is true for x
per
t and the validity of (2.10).

Our main purpose is to characterize the distribution of the random variable A("; �) as
a function of the parameters ", a0 = A� �c and �. The following three theorems describe

the situation in three di�erent parameter regimes.

Theorem 2.3 (Case I � Small amplitude regime). Assume that a0 = A � �c 6 0"

and that � 6 (ja0j _ ")3=4. Then there exist positive constants �, h1, h2, c0 and C such

that the following properties hold for su�ciently small ".

� The probability that a sample path starting near one potential well crosses the potential

barrier during one period is smaller than

C

"
e��(ja0j_")

3=2=�2
: (2.13)

� Case Ia: Assume that either a0 > �" or � 6
p
"=jlogja0jj. Then the deviation of the

area A("; �) from its deterministic value A("; 0) satis�es

P
�jA("; �)� A("; 0)j > H

	
6

8>><
>>:
C

"
e��H

2=(�2")
for 0 6 H 6 H1("; a0),

C

"
e��H

4=�2
for H > h2,

(2.14)

where H1("; a0) = h1
p
"(ja0j_")3=4^("=jlog(ja0j_")j). Furthermore, under the slightly

stronger assumption �jlog "j 6 c0(ja0j _ ")3=4,��E�A("; �)� A("; 0)	�� 6 O(�2jlog(ja0j _ ")j) (2.15)

Var
�A("; �)�A("; 0)	 � �

2
": (2.16)

� Case Ib: Assume now that a0 6 �" and � >
p
"=jlogja0jj. Then (2.14) still holds,

and in addition, we have

P
�jA("; �)� A("; 0)j > H

	
6
C

"
e��H=(�2jlogja0jj) (2.17)
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for "=jlogja0jj 6 H 6 H2("; a0) = h1ja0j3=2jlogja0jj. Moreover, under the slightly

stronger assumption �jlog "j 6 c0(ja0j _ ")3=4,��E�A("; �)�A("; 0)	�� 6 O(�2jlogja0jj) (2.18)

Var
�A("; �)�A("; 0)	 6 O(�4jlogja0jj2): (2.19)

The proof follows as a particular case of more general results presented in Section 4.

In Case Ia, the distribution of A("; �) is close to a Gaussian centred at A("; 0). Both
the expectation of A("; �)�A("; 0) and its standard deviation are smaller than the deter-

ministic value A("; 0) � ". Thus one will still observe, with a high probability, an area of

the same order as the deterministic one.

In Case Ib, the distribution of A("; �) becomes more spread out, with a standard

deviation possibly exceeding the deterministic value A("; 0). Thus, although typical values

of A("; �) will still be small, the probability of negative values is no longer negligible, and

the deterministic scaling law A("; 0) � " can no longer be observed.

The quartic decay of the probability of deviations of order larger than 1 from the

deterministic area is a consequence of the cubic growth of the drift term F for large jxj. In
fact, this property holds in all parameter regimes, since it does not depend on the details

of the dynamics near the origin. For the sake of brevity, we will not repeat this estimate

in the other regimes.

Note that there is a gap between H 6 H1 or H2 and H > h2 where we do not describe

the deviations. In fact, the distribution of A("; �) will not be unimodal. Sample paths are

unlikely to jump from one potential well to the other one, but if they do so, then most

likely near the instant of minimal barrier height, producing a small peak in the distribution

for areas A("; �) of order 1.
Theorem 2.4 (Case II � Large amplitude regime). Assume that a0 = A� �c > 1"

and that � 6 ("
p
a0)

1=2. Then there exist positive constants �, h1, h2, c0, L0, L1, L2 and

C such that the following properties hold for su�ciently small ".

� Let �0 denote the (random) value of � when xt changes sign for the �rst time. Then

P
�j�0j < �c � L

	
6
C

"
e��(L

3=2_"pa0)=�2 (2.20)

for �L1("
p
a0)

2=3 6 L 6 L0=jlog("pa0)j, and

P
�j�0j > �c + L

	
6 3 1(0;a0](L) exp

�
� �

�2

L

("
p
a0 )

2=3jlog("pa0)j

�
(2.21)

for L > L2("
p
a0)

2=3
.

� Case IIa: Assume that � 6 ("
p
a0 )

5=6
. Then

P
�jA("; �)�A("; 0)j > H

	
6
C

"
exp

�
�� H2

�2("
p
a0 )

1=3

�
8H 6 h1"

p
a0: (2.22)

Furthermore, under the slightly stronger assumption �jlog "j 6 c0("
p
a0)

5=6
,

��E�A("; �)�A("; 0)	�� 6 O� �
2jlog "j

("
p
a0 )

2=3

�
(2.23)

Var
�A("; �)� A("; 0)	� �

2("
p
a0 )

1=3
: (2.24)
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x x

Figure 4. A sample path of Equation 2.1 for " = 0:005, � = 0:04 and a0 = 0:04,

corresponding to the large amplitude regime. A solution for � = 0 is shown for comparison.

� Case IIb: Assume now that ("
p
a0 )

5=6 6 � 6 ("
p
a0 )

1=2
. Then

P
�A("; �)�A("; 0) 6 �H	 6 C

"
e��H

3=2=�2 (2.25)

P
�A("; �)�A("; 0) > +H

	
6
C

"
exp

�
�� ("

p
a0)

1=3H

�2jlog("pa0 )j
�

(2.26)

for h1("
p
a0 )

2=3jlog("pa0)j 6 H 6 h2("
p
a0)

1=3jlog("2=3a�1=60 )j. As a consequence, if

� 6 c0("
p
a0)=

p
jlog "j, then expectation and standard deviation of A("; �) � A("; 0)

are both at most of order ("
p
a0 )

2=3jlog("pa0)j.
The proof is given in Section 6.

The estimates (2.20) and (2.21) show that the value of the parameter (e. g. the magnetic

�eld) for which xt changes sign is most likely �(�c+O(("
p
a0)

2=3)), which corresponds to

the deterministic value.

In Case IIa, the distribution of A("; �) is again close to a Gaussian in a neighbourhood

of A("; 0). Both the expectation of A("; �)�A("; 0) and its standard deviation are smaller

than the deterministic value of A("; 0)�A0 � ("
p
a0 )

2=3. Thus one will still observe, with

a high probability, an area of the same order as the deterministic one.

In Case IIb, we can only show that A("; �) is likely to belong to an interval of size

("
p
a0)

2=3jlog("pa0 )j centred at the deterministic value, so that A("; �)� A0 is not nec-

essarily positive with probability close to 1. There is a gap between the estimates (2.25)

and (2.26) outside this interval, and the trivial bound 1 inside the interval. This is due to

the large spreading of paths during the jump. However, this result may conceivably fall

short of being optimal.

Theorem 2.5 (Case III � Large noise regime). Assume that either a0 6 " and

� > (ja0j _ ")3=4, or a0 > " and � > ("
p
a0)

1=2. Then there exists a (deterministic)

reference area Â, satisfying
Â � A0 � ��4=3; (2.27)

and positive constants �, h1, h2, c0, c1, c2 and C, such that the following properties hold

for su�ciently small ".

9



� t

x x

Figure 5. A sample path of Equation 2.1 for " = 0:005, � = 0:16 and a0 = �0:01,

corresponding to the large noise regime. A solution for � = 0 is shown for comparison.

� Case IIIa: Either a0 6 " or � > a
3=4
0 . Then the deviation of the area A("; �) from

the reference value Â satis�es

P
�A("; �)� Â < �H	 6 C

"
e��H

3=2=�2 +
3

2
e���

4=3=("jlog�j) (2.28)

P
�A("; �)� Â > +H

	
6
C

"
e��H=(�2jlog�j)+

3

2
1[0;h2�4=3)(H) e��H=("jlog�j) (2.29)

for 0 6 H 6 h1�
2=3jlog �j. Moreover, if the noise intensity satis�es c1" < �

4=3
=jlog �j2

and �
2=3jlog �j 6 c2=jlog "j, then

E
�A("; �)� Â	 2 [�C�4=3jlog "j2=3; C("_ �2jlog "j)jlog�j] (2.30)

Var
�A("; �)� Â	 6 C

�
�
4=3jlog "j2=3�2: (2.31)

� Case IIIb: a0 > " and � 6 a
3=4
0 . Let `0 = jlog(�4=3=pa0)j. Then

P
�A("; �)� Â < �H	 6 C

"
e��H

3=2=�2 +
3

2
e���

2=("
p
a0jlog�j) (2.32)

P
�A("; �)� Â > +H

	
6
C

"
e��H=(�2`0)+

3

2
1[0;h2a0)(H) e���

2=3H=("
p
a0jlog�j) (2.33)

for 0 6 H 6 h1�
2=3`0. In addition, if � > c1("

p
a0 )

1=2jlog "j, then

E
�A("; �)� Â	 2 [�C�4=3jlog "j2=3; C(�2`0jlog "j _ "

p
a0jlog �j=�2=3)] (2.34)

Var
�A("; �)� Â	 6 C

�
�
4=3jlog "j2=3�2: (2.35)

The value �0 of � at the �rst time xt reaches 0 behaves in a similar way as the area, when

compared to a reference value �̂ equal to �c �O(�4=3).

The proof is given in Section 5.

The main feature in this parameter regime is that the noise intensity is su�ciently large

to drive xt over the potential barrier before it reaches its minimal height or even vanishes.

The barrier is typically crossed when j�j equals �c �O(�4=3).
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The distribution of A("; �) decays faster to the right of Â than to the left. The

probability that A("; �) exceeds A0 is very small (unless � approaches its threshold value),

so that it is indeed likely to observe an area that is smaller than A0, by an amount of order

�4=3.

3 Deterministic case

In this section we discuss the deterministic equation

"
dx

dt
= x� x3 + �(t) (3.1)

with initial condition x�1=2 = x0. Recall that we are interested in the case �(t) =

�A cos(2�t) with A = �c + a0. Since this equation has already been studied in [JGRM,

TO, BK, BG2], we only outline the main properties without proofs.

3.1 The case a0 6 0"

The simplest situation occurs when a0 is negative and of order 1. Then the three curves

x
?
�(t) = X

?
�(�(t)) and x

?
0(t) = X

?
0(�(t)) are uniformly hyperbolic equilibrium curves of the

associated family of frozen systems _x = x�x3+�. Thus Tihonov's theorem [Ti, Gr] shows

the existence of particular solutions x�t and x0t tracking, respectively, x
?
�(t) and x

?
0(t) at a

distance of order ". These solutions are not necessarily periodic, but the curves x�t attract

a neighbourhood of order 1 exponentially fast. Thus the Poincaré map P : x�1=2 7! x1=2

maps neighbourhoods of order 1 of x?�(�1=2), respectively, to two exponentially small

intervals containing x�
1=2. This implies the existence of a unique �xed point (corresponding

to a periodic orbit) in each interval. A similar statement is true for P�1 in a neighbourhood

of x?0(1=2). The fact that xt is monotonous between the equilibrium branches excludes the

existence of other periodic orbits (see, e.g. [Ber, Proposition 4.8]).

If a0 is a small parameter, Tihonov's theorem can also be applied outside a given

interval [�T; T ], T a constant of order 1, while the dynamics in [�T; T ] has to be analysed
separately. For jtj > c0(ja0j _ ")1=2, c0 a su�ciently large constant, one can consider the

deviation yt = xt � x?+(t), which obeys the equation

"
dy

dt
= a

?
+(t)y + b

?
+(y; t)� "

dx?+

dt
; (3.2)

where

a
?
+(t) = 1� 3(x?+(t))

2

b
?
+(y; t) = �y2�3x?+(t) + y

�
:

(3.3)

This equation is used to show (see [BG2, Section 4.1]) that

yt � "

jtj for �T 6 t 6 �c0(ja0j _ ")1=2. (3.4)

In the case a0 6 �"=0 for some small enough 0 > 0, one also obtains from (3.2) that for

jtj 6 c0

pja0j,
yt = �tC1(t) + C2(t) with C1(t) � "

ja0j
; C2(t) � "

2

ja0j3=2
; (3.5)
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which implies that yt becomes negative at a time of order "ja0j�1=2. If �"=0 6 a0 6 0",

the dynamics for jtj 6 c0
p
" is analysed by the change of variables

t = c
p
"s; x =

1p
3

�
1 +

p
"

c
z

�
; (3.6)

where 2�2Ac4 = 1. Then z obeys a perturbation of order
p
" of the Riccati equation

dz

ds
= s

2 � z2 � Æ; where Æ =
p
3 c2

a0

"
6
p
3 c2 0, (3.7)

which can be used to show that for 0 small enough, zs � 1 for s of order 1. It follows that

for all a0 6 0",

xt � 1p
3
� (ja0j _ ")1=2 for jtj 6 c0(ja0j _ ")1=2. (3.8)

Finally, one obtains as before that

yt � � "

jtj for c0(ja0j _ ")1=2 6 t 6 T . (3.9)

Hence there is a solution of (3.1) tracking x?+(t) at a distance of order "=(jtj _
p
ja0j _

p
")

(if a0 > 0, x?+(t) does not exist during a small time interval, but this gap is too small for xt
to slip through). Later we will use the fact that the linearization of F around this solution

satis�es

a(t) :=
@

@x

�
x� x3 �A cos(2�t)

����
x=xt

� �(jtj _
p
ja0j _

p
"): (3.10)

Furthermore, we will need that fact that ja0(t)j is bounded above by a constant independent

of " and a0. This can be shown by using the relation

a
0(t) = �6xt d

dt
xt = �6xt 1

"
F (xt; �(t)): (3.11)

The cases jtj > (ja0j _ ")1=2 and a0 6 �"=0 can be treated by expanding F around the

equilibrium branch x?+(t) that xt is tracking, and using the estimates (3.4), (3.5), (3.9) for

xt � x?+(t). The remaining case can be treated by considering (3.7) directly.

In addition, these estimates show that

A("; 0) = 2�A

Z 1=2

�1=2
xt sin(2�t) dt � "A: (3.12)

Similar properties hold for solutions tracking x?�(t) and x
?
0(t), and the above arguments

on the Poincaré map can be repeated to show the existence of two stable and one unstable

periodic orbit.

3.2 The case a0 > 1"

Let tc be the solution of A cos(2�tc) = �c in [0; 1=4]. The equilibrium branches x?+ and x?0
bifurcate at the point (�tc; xc), where xc = 1=

p
3. The translation

t = �tc + s; x = xc + y (3.13)
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yields the equation

"
dy

ds
= �(s)�

p
3y2 � y

3
; (3.14)

where

�(s) = �c � A cos(2�(�tc + s))

= �c(1� cos(2�s))�
p
A2 � �2c sin(2�s)

= �2�
q
2a0�c + a

2
0 s + 2�2�cs

2 +O(s3): (3.15)

As before, one shows that ys tracks the equilibrium branch y?+(s) = x
?
+(�tc + s)� xc at a

distance scaling like "=jsj for s 6 �"2=3a�1=60 . For larger times, we use the scaling

s = c"
2=3
a
�1=6
0 u; y =

1p
3c
"
1=3
a
1=6
0 z (3.16)

which yields, for an appropriate choice of c, a perturbation of order "1=3a
1=6
0 of the Riccati

equation
dz

du
= �̂(u)� z

2
; where �̂(u) = �u+O("2=3a

�2=3
0 u

2). (3.17)

For su�ciently large 1 (recall that a0 > 1"), one can show that zu reaches a value of order

�1 in a time of order 1, and thus ys reaches order �"1=3a1=60 for some s of order "2=3a
�1=6
0 .

Finally, the fact that the right-hand side of (3.14) is smaller than �y2 for su�ciently small

s and y can be used to show that ys reaches values of order �1 after another time of order

"2=3a
�1=6
0 . For larger times, ys is quickly attracted by the lower stable equilibrium branch.

Later we will use the fact that the linearization around ys satis�es

a(�tc + s) :=
@

@y

�
�(s)�

p
3y2 � y3����

y=ys
� �(jsj _ a1=40

p
jsj _ "1=3a1=60 ) (3.18)

for s 6 c0"
2=3
a
�1=6
0 . Furthermore, one can check that ja0(t)j is bounded above by a constant

times (a0=")
1=3 for t 6 �tc+O("2=3a

�1=6
0 ). It is easy to see that the solution we constructed

encloses an area satisfying A�A0 � "2=3a
1=3
0 , where the main contribution comes from the

delayed jump from a neighbourhood of x?+(t) to a neighbourhood of x?�(t). Since x
?
+(t) is

the only equilibrium branch near t0 = �1=2, the Poincaré map contracts any interval of

order 1 containing x?+(t) to an exponentially small neighbourhood of x1=2, which implies

the existence of a unique periodic orbit.

4 The random motion near stable equilibrium branches

We consider now the SDE

dxt =
1

"

�
xt � x

3
t � A cos(2�t)

�
dt +

�p
"
dWt (4.1)

with a given (deterministic) initial condition xt0 = x0. Let x
det
t denote the solution of the

deterministic equation (3.1) with the same initial condition. We will start by investigating

the di�erence xt � xdett , and then derive some properties of the area delimited by this

di�erence.
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4.1 Noise-induced deviations from the deterministic solution

The di�erence yt = xt � xdett obeys the SDE

dyt =
1

"

�
a(t)yt + b(yt; t)

�
dt +

�p
"
dWt; yt0 = 0; (4.2)

where

a(t) = 1� 3(xdett )2

b(y; t) = �y2�3xdett + y
�
:

(4.3)

In this section, we are interested in situations where xdets is attracting up to time t, that

is, we assume that a(s) < 0 for t0 6 s 6 t. Results from the previous section (see (3.10)

and (3.18)) show that this is true when the following condition is satis�ed.

Assumption 4.1 (Stable case). Assume

� either a0 6 0" and t arbitrary

� or a0 > 1", t0 > �1=2 and t 6 t
? :=�tc + c0"

2=3
a
�1=6
0 .

For the sake of brevity, we will refer to these assumptions as stable case.

If we were to omit the nonlinear term b(y; t) in (4.2), the solution yt of the equation

would be normally distributed with mean zero and variance

v(t) =
�2

"

Z t

t0

e2�(t;s)=" ds; where �(t; s) =

Z t

s
a(u) du. (4.4)

It is straightforward to show that the function

�(t) :=
1

2ja(t0)j e
2�(t;t0)="+

1

"

Z t

t0

e2�(t;s)=" ds (4.5)

satis�es, in both cases summarized in Assumption 4.1,

�(t) � 1

2ja(t)j : (4.6)

Thus in the linear case, the standard deviation of yt is smaller than �
p
�(t). The following

result applies to the whole path fysgt06s6t of the nonlinear equation (4.2).

Proposition 4.2. Let

�̂(t) = sup
t06s6t

�(s): (4.7)

In the stable case, there exists a constant h0 (h0 � 1) such that for all h 6 h0�̂(t)
�3=2

,

P
t0;0

�
sup

t06s6t

jysjp
�(s)

> h

�
6

� j�(t; t0)j
"2

+2

�
exp

�
�1

2

h
2

�2

�
1�O(")�O�h�̂(t)3=2���: (4.8)

Proof: The case a0 6 0 is the one considered in [BG2, Theorem 2.6], and the other cases

can be proved in exactly the same way.
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If we do not care for the precise value of the exponent in (4.8), an obvious modi�cation

in the proof yields the bound

P
t0;0

�
sup

t06s6t

jysjp
�(s)

> h

�
6 C

�
t� t0

"
+ 1

�
e��h

2=�2
; (4.9)

for all h 6 h0�̂(t)
�3=2, where C and � are positive constants. This estimate shows that in

the time interval [t0; t], the typical spreading of paths is of order �
p
�(s) for � � �̂(t)�3=2.

It allows to bound the probability of deviations up to order �̂(t)�1. On the other hand, the

special (cubic) form of the drift term in Equation (4.2) allows for a bound on deviations

of order larger than 1.

Proposition 4.3. There exist constants L0; C; � > 0 such that for all L > L0 and all

y0 6 L0=2,

P
t0;y0

�
sup

t06s6t
ys > L

�
6 C

�
t� t0

"
+ 1

�
e��L

4=�2
: (4.10)

Proof: First note that we are working in slow time. The estimate is classical for t�t0 6 ",

and starting from there, (4.10) can be obtained by considering a partition of the interval

[t0; t] with spacing proportional to "=(t� t0).

Remark 4.4. Note that the preceding proposition holds for all a0, but L0 may depend on

the amplitude A.

The following proposition gives bounds on the moments of yt. These bounds hold

whenever the estimates (4.9) and (4.10) are satis�ed, and we do not need to assume that

a(s) < 0 holds for all s.

Proposition 4.5. Fix t > t0 such that t � t0 is at most of order 1 and assume that there

exists an h0("; t) > 0 such that (4.9) holds for all h 6 h0("; t). Then there exist constants

K;M > 0 such that

E
t0 ;0

�jytj2k	 6 k!Mk
�
2k
�(t)k

�
1 +

jlog "jk
k!

�
; k 2 N ; (4.11)

whenever � satis�es K�
p
jlog("�2)j 6 h0("; t).

Proof: We will only prove the case k = 1, as the general case follows along the same

lines. Let  = K�
p
jlog "j for some constantK > 0 to be chosen later and set h = h0("; t).

Note that, under our condition on �, we may assume  < h. Let �0 = infs2[t0;t] �(s). We

write the expectation of y2t as E1 + E, where

E1 = E
t0 ;0

�
y
2
t 1
�
supt06s6t

jysjp
�(s)

6
	� and E = E

t0 ;0

�
y
2
t 1
�
supt06s6t

jysjp
�(s)

>
	�: (4.12)

The �rst term E1 can be estimated trivially, namely by E1 6 
2
�(t). To estimate the

second term E, we employ integration by parts, thereby obtaining

E 6 �(t)

Z 1

0

2zPt0;0

�
sup

t06s6t

jysjp
�(s)

>  _ z
�
dz: (4.13)
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We now split the integral at , h and L0=
p
�0 and estimate the resulting terms separately.

By (4.9),

E2 = �(t)

Z L0=
p
�0

0

2zPt0;0

�
sup

t06s6t

jysjp
�(s)

>  _ z
�
dz

6 �(t)C

�
t � t0
"

+ 1

���

2 +

�
2

�

�
e��

2=�2 +
L
2
0

�0
e��h

2=�2
�
: (4.14)

Estimating the remaining part of the integral with the help of (4.10),

E3 = �(t)

Z 1

L0=
p
�0

2zPt0;0

�
sup

t06s6t

jysjp
�(s)

> _ z
�
dz 6 �(t)C

�
t� t0

"
+1

�
�
2

2�L2
0�0

e��L
4
0=�

2

(4.15)

follows. Since the expectation of y2t is bounded above by E1+E2+E3, (4.11) follows from

the fact that we can choose K large enough to bound all three terms by some constant

times �2�(t)jlog "j.
In the stable case, which is our major concern in this section, the previous bound can

be improved as follows.

Corollary 4.6. Fix t such that t� t0 is at most of order 1. In the stable case, there exist

constants c1 > 0 and M > 0 such that, if �jlog "j�̂(t)3=2 6 c1, then

E
t0 ;0

�jytj2k	 6 k!Mk
�
2k
�(t)k; k 2 N : (4.16)

Proof: Let us again focus on k = 1. Estimate (4.16) is obtained in the same way as (4.11),

the only di�erence lying in a more elaborate bound on E1. We use the integral represen-

tation

yt =
1

"

Z t

t0

e�(t;s)=" b(ys; s) ds+
�p
"

Z t

t0

e�(t;s)=" dWs (4.17)

of the SDE (4.2) (for yt0 = 0), thereby obtaining

E1 6 2E t0 ;0
��

1

"

Z t

t0

e�(t;s)=" b(ys; s) ds

�2
1�

supt06s6t
jysjp
�(s)

6
	�+ 2

�
2

"

Z t

t0

e2�(t;s)=" ds:

(4.18)

The second term on the right-hand side is bounded above by 2�2�(t). The �rst one can

be estimated by bounding b(ys; s) uniformly in s, with the help of the estimate jb(y; s)j6
M0(y

2 + jyj3), valid for all s, c.f. (4.3). The remaining integral behaves like "�(t). Thus

we obtain

E1 6 const �(t)2
�

2
�̂(t) + 

3
�̂(t)3=2

�2
+ 2�2�(t); (4.19)

while E can be estimated as before. Again choosing  = K�
p
jlog "j for K large, yields

Estimate (4.16).

4.2 Noise-induced deviations from the deterministic area

Let us now examine the behaviour of the surface delimited by the process yt. We want to

control the process

Yt = �
Z t

t0

ys�
0(s) ds; (4.20)
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which measures the deviation of the area A("; �) enclosed by xt from the one enclosed by

xdett . Using the representation (4.17) of yt, we obtain, by a version of Fubini's theorem,

that

Yt =
1

"

Z t

t0

g(t; s)b(ys; s) ds+
�p
"

Z t

t0

g(t; s) dWs; (4.21)

where

g(t; s) = �
Z t

s
e�(u;s)=" �0(u) du: (4.22)

In particular, the term

Y
0
t =

�p
"

Z t

t0

g(t; s) dWs (4.23)

is a Gaussian random variable with mean zero and variance

Var(Y 0
t ) =

�2

"

Z t

t0

g(t; s)2 ds: (4.24)

In the sequel, we will use the following abbreviations:

�i(t; t0) =
1

"

Z t

t0

jg(t; s)j�(s)ids; i 2 f1; 3
2
g; (4.25)

�(t; t0) =
1

"2

Z t

t0

jg(t; s)j2ds; (4.26)

�(t; t0) =

Z t

t0

j�0(s)j ds: (4.27)

In addition, we denote by (2k � 1)!! the product
Qk

i=1(2i� 1).

Proposition 4.7. Under the assumptions of Proposition 4.5, there is a constant M1 > 0

such that for all k > 1,

E
t0 ;0

�
(Y 0

t )
2k
	
= (2k � 1)!!

�
�
2
"�(t; t0)

�k
(4.28)

E
t0 ;0

�jY 0
t j2k�1

	
= k! 2k�1

r
2

�

�
�
2
"�(t; t0)

�(2k�1)=2
(4.29)

E
t0 ;0

���Yt � Y
0
t

��k	 6 k!Mk
1

�
�
2�1(t; t0)

�k�
1 +

jlog "jk
k!

�
�
1 + k! �2k

�
�3=2(t; t0)

�1(t; t0)

�2k�
1 +

jlog "jk
k!

��1=2

: (4.30)

Proof: Since (4.28) and (4.29) are an immediate consequence of the fact that Y 0
t is

Gaussian with variance (4.24), we only need to prove (4.30). We restrict our attention to

the case k = 2 as the case k even follows by an obvious adaptation and the case k odd is

obtained from the case k even by an application of Schwarz' inequality. First note that

E
t0 ;0

�
(Yt�Y 0

t )
2
	
6
M

2
0

"2

Z t

t0

Z t

t0

jg(t; u)jjg(t; v)jEt0 ;0�(y2u+ jyuj3)(y2v+ jyv j3)	dv du: (4.31)
Estimating the expectation of the product by Hölder's inequality and Proposition 4.5,

(4.30) follows.
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Remark 4.8. In the stable case, under the assumptions of Corollary 4.6, the bound (4.30)

simpli�es to

E
t0 ;0

���Yt � Y
0
t

��k	 6 k!Mk
1

�
�
2�1(t; t0)

�k�
1 + k! �2k�̂(t)k

�1=2
: (4.32)

The following proposition gives bounds on the probability that the deviation of the

area from the corresponding area in the deterministic case is large.

Proposition 4.9.

� Assume that there exists an h0("; t) > 0 such that (4.9) holds for all h 6 h0("; t). Then

there exist constants h1; �; C > 0 such that for any p 2 (0; 1),

P
t0;0
�jYtj > H

	
6 exp

�
� (1� p)2
2�(t; t0)

H
2

�2"

�
+C

�
t� t0

"
+1

�
exp

n
� �

�2

pH

�1(t; t0)

o
; (4.33)

whenever pH 6 h1�1(t; t0)(h0("; t)
2 ^ �̂(t)�1).

� In addition,

P
t0;0
�jYtj > H

	
6 C

�
t � t0
"

+ 1

�
exp

n
� �

�2

�
H

�(t; t0)

�4o
; (4.34)

whenever H > L0�(t; t0).

Proof: Consider �rst the case pH small. By (4.21), we have for any p 2 (0; 1)

P
t0;0
�jYtj > H

	
6 P

t0;0
�jY 0

t j > (1�p)H	+Pt0;0
n1

"

Z t

t0

jg(t; s)jjb(ys; s)j ds > pH

o
: (4.35)

The �rst term on the right-hand side immediately yields the �rst term in (4.33) due to the

Gaussian nature of Y 0
t . We denote pH=M0 by Q. For q 2 (0; 1), the second term can be

bounded by

P
t0;0

�
sup

t06s6t

jysjp
�(s)

>

�
qQ

�1(t; t0)

�1=2�
+ P

t0;0

�
sup

t06s6t

jysjp
�(s)

>

�
(1� q)Q
�3=2(t; t0)

�1=3�
:

(4.36)

We choose q by
q

1� q
=

1

h0("; t)^ �̂(t)�1=2
�1(t; t0)

�3=2(t; t0)
(4.37)

and estimate both summands in (4.36) by (4.9). Note that the �rst summand dominates

the second one by our choice of q, since we assumed pH 6 h1�1(t; t0)(h0("; t)
2 ^ �̂(t)�1).

Thus we obtain the bound (4.33).

For H large, we employ the trivial bound jYtj 6 (supt06s6tjysj)�(t; t0) together with
Estimate (4.10), thereby obtaining (4.34).

Choosing p = p(H; ") in (4.33) by

p

(1� p)2 =
H

2�"

�1(t; t0)

�(t; t0)
(4.38)

yields the following corollary.
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Corollary 4.10. There exist constants h1; �; C > 0 such that

P
t0;0
�jYtj > H

	
6 C

�
t� t0

"
+ 1

�
exp

�
� (1� p)2
2�(t; t0)

H2

�2"

�
(4.39)

for all H satisfying (1 � p)2H2 6 2�h1"�(t; t0)(h0("; t)
2 ^ �̂(t)�1). Here p is de�ned by

(4.38). Furthermore, whenever H 6 const "�(t; t0)=�1(t; t0), then 1 � p is bounded away

from zero.

In order to complete the proof of Theorem 2.3, we have to control the function g(t; s),

de�ned in (4.22). This task is simpli�ed by using the following lemma.

Lemma 4.11. Assume that ja0(u)j 6 a1(") and a(u) 6 �c
p
"a1(") for all u in an inter-

val [s; t], where c > 0 is independent of a0 and ". Then there exists a constant d > 0,

independent of s; t; c, such that

g(t; s) � � "

ja(s)j
�
�
0(s) +O

�
"

ja(s)j
��

(4.40)

whenever t� s > d"=ja(s)j.

Proof of Theorem 2.3. First note that Proposition 4.2 establishes the bound (2.13) on

the probability of a sample path crossing the potential barrier. From (3.10), (4.6) and the

preceding lemma, one easily obtains

�1(
1
2
;�1

2
) = O�jlog(ja0j _ ")j� and �(1

2
;�1

2
) � 1 (4.41)

in the stable case, while �(12 ;�1
2) � 1 is trivial. Now the preceding results imply the stated

estimates.

5 The large noise regime

In this section, we consider those parameter regimes in which the noise intensity � is large

enough to allow for transitions from one potential well to the other one, with a probability

close to 1. Depending on the amplitude, there are three cases to consider:

� a0 6 �" and � > ja0j3=4;
� ja0j 6 " and � > "3=4;

� a0 > " and � > ("
p
a0 )

1=2.

Actually, we will need to assume that � > Kja0j3=4, � > K"3=4 or � > K("
p
a0)

1=2,

respectively, for some large constant K, but in order not to overburden notations, we will

assume that K = 1 is a possible choice.

Recall that in the deterministic case, transitions are impossible if a0 6 0", and occur

only after time �tc+ c0"2=3a�1=60 if a0 > 1". It turns out that under the above conditions

on �, transitions are likely to occur some time before the potential barrier reaches its

minimal height or even vanishes. For brevity, we shall only discuss the case ja0j 6 " in

detail, but the other cases can be investigated similarly (since transitions occur early, they

are not in�uenced by the details of the bifurcation or avoided bifurcation).
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5.1 The transition time

We assume ja0j 6 " unless stated otherwise. By symmetry, we may restrict our attention

to a half-period, say t 2 [�1=4; 1=4]. Let xt be the solution of the SDE (2.11) starting at

time t0 = �1=4 in the upper well, i. e., near x?+(t0). We de�ne the transition time as the

stopping time

�
0 = inf

�
s > t0 : xs 6 0

	 2 (t0;1]; (5.1)

when xs crosses the t-axis for the �rst time. The choice of xs = 0 is purely for convenience,

and the qualitative behaviour of �0 remains the same if 0 is replaced by any level between

�xc � Æ and xc + Æ as long as Æ > 0 is chosen in such a way that f(x; t) 6 0 holds for all

jxj 6 xc+ Æ and all t in question. The following result characterizes the distribution of �0.

Proposition 5.1. There exist constants C, c1, c2, � > 0 such that

� for t0 < t 6 �c1�2=3,

P
t0;x0

�
�
0
< t

	
6 C

�
t � t0
"

+ 1

�
exp

n
� �

�2�̂(t)3

o
; (5.2)

� for �c1�2=3+ c2" 6 t 6 c1�
2=3

,

P
t0;x0

�
�
0
> t

	
6

3

2
exp

n
� �

jlog �j
1

"

Z t

�c1�2=3
ja(s)j ds

o
+ e��=�

2

: (5.3)

Recall that a(s) is the linearization of the drift term along x
det;+
s as de�ned in (3.10), and

�̂(t) is de�ned in (4.7).

Proof: The �rst part is a direct consequence of (4.9) with h = h1�̂(t)
�3=2, where h1 is

chosen su�ciently small that the relation jxs � xdets j 6 h1=�(s) for all s 2 [t0; t] implies

that xs > 0 for these s.

The second part is an application of Theorem 2.7 in [BG2] (with h = const �jlog "j1=2).
Note that the theorem naturally extends to the case 0 < a0 6 ". In fact, the integrand

in (5.3) should be the curvature of the potential at the deterministic solution tracking the

saddle x?0(t), but the curvature behaves like ja(t)j, compare [BG2, Proposition 4.3].

The condition � > "
3=4 implies that �̂(t)�1 � ja(t)j � jtj for t 6 �c1�2=3, and thus the

exponent in (5.2) scales like jtj3=�2. The integral in (5.3) behaves like �2=3(t+ c1�
2=3).

Proposition 5.1 shows that the transition is likely to occur close to time t1 = �c1�2=3,
which satis�es �(t1) + �c � �4=3. Therefore, we should compare the area A("; �) to a

reference area Â given by

1

2
Â =

Z t1

t0

x
det;+
s (��0(s)) ds +

Z t2

t1

x
det;�
s (��0(s)) ds; (5.4)

where t0 = �1=4, t1 = �c1�2=3, t2 = 1=4, and we denote by x
det;+
s the deterministic

solution starting in x0, which tracks x?+(s), and by x
det;�
s a deterministic solution tracking

x?�(s). It is easy to check that

Â � A0 � ��4=3: (5.5)

(This relation does not depend on the initial conditions of x
det;�
s , as long as they are

su�ciently close to x?+(t0) or x
?�(t1), respectively).
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Remark 5.2. Proposition 5.1 also holds for a0 < �", with the same exponents.

In the case a0 > ", �̂(t)�1 behaves like ja(t)j, given by (3.18). The bound (5.2) holds for

t0 < t 6 t1 = �tc�c1(�2=3^�4=3a�1=20 ), with the exponent replaced by ��a3=40 jt+tcj3=2=�2
if � 6 a

3=4
0 and by ��jt + tcj3=�2 if � > a

3=4
0 . Note that in both cases, �(t1) + �c � �4=3.

The bound (5.3) holds for t1 + c2" 6 t 6 �tc + c0"
2=3
a
�1=6
0 , with an exponent of the

same order as in the other cases, namely �2=3(t � t1)=("jlog�j). The behaviour for larger
t will be discussed in Proposition 6.1 below.

5.2 Deviations from the reference area

Our aim is to characterize the deviations of the random variable A("; �) from its determin-

istic reference value Â over one half-period. We focus again on the case ja0j 6 ". With a

slight abuse of notation, we can write this deviation as 1
2
(A("; �)� Â) = Y

+
t1

+ Y
�
t2
, where

Y
+
t1

:=

Z t1

t0

(xs � xdet;+s )(��0(s)) ds; Y
�
t2

:=

Z t2

t1

(xs � xdet;�s )(��0(s)) ds: (5.6)

We will estimate separately the probability that each of these terms is larger than H or

smaller than �H . To do so, we need a preparatory result allowing to extend the estimate

(4.9) to larger values of h.

Proposition 5.3. De�ne the stopping time

� = inf
�
t 2 [t0; t1] : xt 6 x

det;+
t � h0�̂(t)

�1	 2 [t0; t1] [ f1g; (5.7)

where the constant h0 is taken from Proposition 4.2. Then

P
t0;x0

�
sup

t06s6�

jxs � xdet;+s jp
�(s)

> h

�
6
C

"
e��h

2=�2 (5.8)

for some C, � > 0, all t 2 [t0; t1] and all h > 0.

Proof: The fact that the drift term F has a negative second derivative with respect to x

for all x > 0 implies that xs is unlikely to exit the strip of width h
p
�(s) through its upper

boundary, as was proved for negative a0 in [BG2, Proposition 4.5]. We also know by (4.9)

that xs is unlikely to exit the strip through its lower boundary if � � h 6 h0�̂(t)
�3=2. The

stopping time � has been de�ned in such a way that xs cannot leave a strip of larger width

before time � .

Note that by decreasing h0 if necessary, we can arrange for � < �0. We are now able

to estimate deviations of Y +
t1
.

Proposition 5.4. There exist constants C, �, h1 > 0 such that

P
t0;x0

�
Y

+
t1
< �H	 6 C

"
e��H

3=2=�2 (5.9)

P
t0;x0

�
Y

+
t1
> +H

	
6 e��H

2=(�2")+
C

"
e��H=(�2jlog�j) (5.10)

for 0 6 H 6 h1�
2=3jlog �j.
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Proof: We decompose

P
t0;x0

�
Y

+
t1
< �H	 6 Pt0;x0

�
Y

+
�^t1 < �1

2
H
	

(5.11)

+ E t0 ;x0

�
1f�<t1gP

�;x�

�Z t1

�
(xs � xdet;+s )(��0(s)) ds < �1

2
H

��
;

where � is de�ned in (5.7). The �rst term on the right-hand side can be estimated as

in Proposition 4.9, as there is no need to distinguish positive and negative deviations for

this term. However, Proposition 5.3 allows us to obtain bounds valid on a larger domain

of H . Note that Proposition 4.9 remains valid when Yt is replaced by Y�^t. This is a

consequence of the �i(t; t0) being monotone functions of t 2 [t0; t1] and a slightly more

elaborate estimate showing that supt06s6tjY 0
s j obeys the same bound as was used for jY 0

t j
in (4.35). Thus we obtain the estimate

P
t0;x0

�jY +
�^t1j > H

	
6 exp

�
� (1� p)2

2�(t1; t0)

H
2

�2"

�
+
C

"
exp

n
� �

�1(t1; t0)

pH

�2

o
; (5.12)

valid for pH 6 const �1(t1; t0)=�̂(t1). An application of Lemma 4.11 shows that �(t1; t0) �
1, �1(t1; t0) � jlog �j, and we already know that �̂(t1) � ��2=3. Choosing p � 1 provides

an estimate of the form (5.10). The second term on the right-hand side of (5.11) can be

estimated, using the monotonicity of � in [t0; t1], by the relation

P
�;x�

nZ t1

�
(xs � xdet;+s )(��0(s)) ds < �H

o
6 P

�;x�
n

sup
�6s6t1

jxs � x
det;+
s j > L

o
+ P

�;x�
�
�(�)� �(t1) > H=L

	
: (5.13)

The �rst term on the right-hand side can be estimated by Proposition 4.3, provided L is

larger than some constant of order 1. It decreases like e�const=�2=". Using the fact that

�(�)� �(t1) � �
2 � t21 for � not too close to t0 (note that the contribution of � close to t0

is even smaller) and (5.2) of Proposition 5.1, we obtain that

E
t0 ;x0

n
1f�<t1gP

�;x�
�
�(�)� �(t1) > H=L

	o
6
C

"
e�const H3=2=�2

: (5.14)

This last term is easily seen to dominate all others, so that (5.9) is proved.

To estimate deviations in the positive direction, we split terms as in (5.11). The �rst

term can also be bounded by (5.12). Using the fact (compare [BG2, Proposition 4.5]) that

P
�;x�

�
sup

�6s6t1

xs � xdet;+sp
�(s)

>

p
H=2

�
6
C

"
e��H=�2

; (5.15)

it only remains to estimate

P
�;x�

�Z t1

�
(xs � xdet;+s )(��0(s)) ds > H=2; sup

�6s6t1

xs � xdet;+sp
�(s)

6
p
H=2

�

6 P
�;x�

�Z t1

�

p
�(s)(��0(s)) ds >

p
H=2

�
6 P

�;x�
�j� j3=2 > � + const

p
H
	
: (5.16)

The expectation of this term also decreases like e��H=�2
=" by Proposition 5.1. Taking

(5.12) and (5.15) into account, we have proved (5.10).
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The term Y
�
t2

can be controlled in a similar way:

Proposition 5.5. There exist constants C, �, h2, h3 > 0 such that for all xt1 2 [�L; L]
(L � 1), and all H 6 h3,

P
t1;xt1

�
Y
�
t2
< �H	 6 C

"
e��H=�2 +

3

2
e���

4=3=("jlog�j)+e��H
2=(�2") (5.17)

P
t1;xt1

�
Y
�
t2
> +H

	
6
C

"
e��H=�2 +

3

2
1[0;h2�4=3)(H) e��H=("jlog�j)

: (5.18)

Proof: The proof being similar to the one of the previous proposition, we only outline

the main steps. Introduce a stopping time �c = inffs 2 [t1; t2] : xs 6 �xc � Æg for some

small Æ > 0, cf. the comment on the de�nition of �0 in the beginning of the subsection.

We �rst need to control the behaviour of

Y
�
�c^t2 =

Z �c^0

t1

(xs � xdet;�s )(��0(s)) ds+
Z �c^t2

�c^0
(xs � xdet;�s )(��0(s)) ds: (5.19)

Observe that since xs > x
det;�
s for s 6 �c, the �rst term on the right-hand side is positive,

while the second one is negative or zero. First note that if xs is bounded above by L � 1,

then Y �
�c^t2 cannot exceed a value of order �

4=3. Deviations of Y ��c^t2 in the positive direction
can be bounded using a decomposition similar to (5.13) and applying (5.3) for �c instead

of � . We �nd

P
t1;xt1

�
Y
�
�c^t2 > H

	
6
C

"
e��=�

2

+
3

2
1[0;h2�4=3)(H) e��H=("jlog�j)

; (5.20)

valid for H > O("�2=3).

Deviations of Y �
�c^t2 in the negative direction can only be caused by the second term on

the right-hand side of (5.19). However, there is no small lower bound for that term. The

reason is that transitions to x
det;�
s are only probable in the window t 2 [�c1�2=3; c1�2=3].

If this opportunity is missed, which happens with a probability of order e���
4=3=("jlog�j),

then xs keeps tracking x
det;+
s and Y �

�c^t2 may reach negative values of order 1.

To complete the proof, we need to show that on f�c < t2g

P
�c;x�c

�����
Z t2

�c

(xs � x
det;�
s )(��0(s)) ds

���� > H

�
6 e��H

2=(�2")+
C

"
e��H=�2

: (5.21)

Let x
det;�c
s be the deterministic solution starting in x�c at time �c. This solution is attractive,

and thus (5.21) holds with x
det;�c
s instead of x

det;�
s as a consequence of Proposition 4.9. But

the distance between x
det;�c
s and x

det;�
s decreases exponentially in (s� �c)=", which implies

that the area between them is at most of order "�2=3. Thus (5.21) holds forH > O("�2=3).

But for smaller H , it is trivially satis�ed.

We can summarize the properties obtained so far in the following way.

Proposition 5.6. There exist constants C, �, h1, h2, h3 > 0 such that

P
t0;x0

�A� Â < �H	 6 C

"
e��H

3=2=�2 +
3

2
e���

4=3=("jlog�j) (5.22)

P
t0;x0

�A� Â > +H
	
6
C

"
e��H=(�2jlog�j)+

3

2
1[0;h2�4=3)(H) e��H=("jlog�j) (5.23)
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for 0 6 H 6 h1�
2=3jlog �j. In addition, for all H > h3 we have

P
t0;x0

�jAj > H
	
6
C

"
e��H

4=�2
: (5.24)

As an immediate consequence, we obtain the following estimates on the moments of

the deviation of the area.

Corollary 5.7. There exist positive constants C, c1, c2 such that

E
t0 ;x0

�A("; �)� Â	 > �C�4=3jlog "j2=3 (5.25)

E
t0 ;x0

�A("; �)� Â	 6 C
�
(" _ �2jlog "j)jlog�j� (5.26)

E
t0 ;x0

�
(A("; �)� Â)2	 6 C

�
�
4=3jlog "j2=3�2 (5.27)

provided c1" < �4=3=jlog �j2 and �2=3jlog �j 6 c2=jlog "j.
Proof: By partial integration,

E
t0 ;x0

�A� Â	 =

Z 1

0

P
t0;x0

�A� Â > H
	
dH �

Z 1

0

P
t0;x0

�A� Â < �H	dH: (5.28)

The �rst integral be evaluated by splitting it at H = C("_�2jlog "j)jlog �j, h2�4=3 and h3,
and the second one at C�4=3jlog "j2=3 and h3. Each time, the integral over the �rst interval

dominates. The estimate (5.27) is obtained similarly.

6 The large amplitude case

We consider �nally the large amplitude case a0 > 1", but with noise intensity � satisfying

�2 <
p
a0". By symmetry, we may again concentrate on a half-period [�1=2; 0]. Let xt

be the solution of the SDE (2.11) starting at time t0 = �1=2 in the upper well, i. e., near

x
?
+(t). Recall that the solution x

det
t of the deterministic equation (3.1) with the same initial

condition tracks x?+(t) until time �tc, and jumps to the other potential well at x?�(t) after
a delay of order "2=3a

�1=6
0 .

We introduce a time t? = �tc + c0"
2=3
a
�1=6
0 just before the jump. Then we know that

for t0 6 t = �tc + s 6 t?,

x
det
t � xc � 1

�(t)
� �a(t) � jsj _ a1=40

p
s _ ("

p
a0)

1=3
; (6.1)

compare (3.18) and (4.6). The fact that xdett behaves in this way follows from the fact that

x?+(t)�xc �
p
�(s) dominates x?(t)+�xdett for t 6 �tc� "2=3a�1=60 , c.f. (3.14). For larger

t, we know from (3.16) and (3.17) that xdett � xc � ("
p
a0 )

1=3.

6.1 The transition time

Let us again start by investigating the distribution of the stopping time

�
0 = inf

�
s > t0 : xs = 0

	
: (6.2)

The following result shows that �0 is likely to be close to t?.
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Proposition 6.1. There exist constants C, c1, � > 0 such that

� for t0 6 t 6 t
?
,

P
t0;x0

�
�
0
< t

	
6 C

�
t � t0
"

+ 1

�
exp

�
� �

�2�̂(t)3

�
: (6.3)

� for t
? 6 t 6 t

? + c1
p
a0, 0 6 xt? 6 � and any � > xc,

P
t?;xt?

�
�
0
> t

	
6 3 exp

�
�"
p
a0

�2

�
�

jlog("2a0)j _ log �

a
1=6
0 (t� t

?)

"2=3
� 1

��
: (6.4)

Proof: First note that (6.3) is a direct consequence of Proposition 4.2 as we are in the

stable case.

In order to prove (6.4), we consider again the stochastic process yt = xt�xc, satisfying
the SDE

dyt =
1

"

�
�(t+ tc)�

p
3y2t � y3t

�
dt+

�p
"
dWt; yt? = xt? � xc; (6.5)

where (3.14) implies �(t+ tc) 6 �"2=3a1=30 for t? 6 t 6 t
? + c1

p
a0. Note furthermore that

�p3y2t � y3t 6 �y2t for t 6 �0. By Gronwall's inequality, it follows that yt 6 zt for t 6 �0,

where zt is de�ned as the solution of the time-homogeneous SDE

dzt =
1

"

��"2=3a1=30 � z2t
�
dt +

�p
"
dWt; zt? = xt? � xc: (6.6)

For any Æ0 > 0, we can write

P
t?;xt?

�
�
0
> t

	
6 P

t?;xt?
n

sup
t?6s6t

zs > Æ0

o
+ P

t?;xt?
��xc 6 zs 6 Æ0 8s 2 [t?; t]

	
: (6.7)

Since (6.6) is an autonomous SDE, it is easy to see that the �rst term on the right-hand

side can be bounded by

P
t?;xt?

n
sup

t?6s6t
zs > Æ0

o
6 C

�
t� t?
"

+ 1

�
e��Æ

3
0=�

2

; (6.8)

which can be made as small as we like by taking Æ0 su�ciently large. In order to estimate

the second term, we introduce � = c"
2=3
a
�1=6
0 , where c > 1 will be chosen later, and de�ne

Q = sup
�xc6z06Æ0

P
0;z0
��xc 6 zs 6 Æ0 8s 2 [0;�]

	
: (6.9)

Using time homogeneity and the Markov property, we can write

P
t?;xt?

��xc 6 zs 6 Æ0 8s 2 [t?; t]
	
6 Q

(t�t?)=��1
: (6.10)

The result is thus proved if we manage to bound Q by a term exponentially small in

"
p
a0=�

2.

In order to estimate Q, it is convenient to introduce the process ~zt = �zt=("1=3a1=60 ),

which obeys the SDE

d~zt =
a
1=6
0

"2=3

�
1 + ~z2t

�
dt� �

"5=6a
1=6
0

dWt; ~zt? = �xt? � xc

"1=3a
1=6
0

: (6.11)
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Let � = xc=("
1=3
a
1=6
0 ) and Æ = Æ0=("

1=3
a
1=6
0 ). Using again Markov property and time-

homogeneity shows that Q 6 Q1 +Q2 +Q3, where

Q1 = sup
�Æ6~z06�1

P
0;~z0
�
~zs < �1 8s 2 [0;�=3]

	
Q2 = sup

�16~z061
P
0;~z0
�
~zs < 1 8s 2 [0;�=3]

	
(6.12)

Q3 = sup
16~z06�

P
0;~z0
�
~zs < � 8s 2 [0;�=3]

	
:

Since 1+~z2 > 1_j~zj, each term can be easily estimated by comparison with an appropriate

linear or ~z-independent equation. Consider for instance Q1. We know that ~zt lies above

the solution ~z0t of the linear SDE

d~z0t = �a
1=6
0

"2=3
~z0t dt �

�

"5=6a
1=6
0

dWt; ~z00 = �Æ; (6.13)

the solution of which at time �=3 is a Gaussian random variable with mean �Æ e�c=3 and

variance (1� e�2c=3)�2=(2"
p
a0 ). We can thus estimate

Q1 6 P
0;�Æ�~z0�=3 < �1	 6 exp

n
�"
p
a0

�2

(1� Æ e�c=3)2
1� e�2c=3

o
; (6.14)

provided Æ e�c=3 < 1, i. e., c > 3 log Æ. Now, Q2 and Q3 allow for similar bounds, and the

result thus follows from (6.8) and (6.10), taking Æ0 and c su�ciently large.

6.2 The case IIa

We now examine the process Yt de�ned in (4.20), which describes deviations from the

deterministic area. Using Lemma 4.11 and (6.1), it is easy to check that

�1(t
?
; t0) � jlog("2=3a�1=60 )j and �(t?; t0) � 1; (6.15)

where t0 = �1=2. Applying Remark 4.8 and Corollary 4.10, it is straightforward to check

that the distribution of Yt is close to a Gaussian with variance proportional to �2".

The situation changes, however, for t > t?, because the deterministic solution crosses a

zone of instability between xc and �xc, compare (4.3). This instability causes a spreading

of paths which we will now analyse in more detail. Let us introduce times t?1 and t?2 such

that

x
det
t?1

= xc � c1("
p
a0)

1=3
; x

det
t?2

= �xc � Æ; (6.16)

where c1 > 0 and Æ < xc. Then t?1 � t? and t?2 � t? are both of order "2=3a
�1=6
0 . We

now proceed to determining the behaviour of �(t), de�ned in (4.5), which measures the

spreading of paths around the deterministic solution.

Proposition 6.2. Let zt = xc � x
det
t . Then there exist constants C, K > 0 such that

�(t) � ("
p
a0)

�1=3
for t

?
6 t 6 t

?
1 (6.17)

�(t) � ("
p
a0)

�5=3
z
4
t for t

?
1 6 t 6 t

?
2 (6.18)

�(t) 6 C
�
("
p
a0 )

�5=3 e�K(t�t?2)="+1
�

for t
?
2 6 t 6 0: (6.19)
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Proof: (6.17) follows by an elementary calculation. Next, consider the time interval

t?1 6 t 6 t?2. The variable zt satis�es the di�erential equation

dzt

dt
=

1

"

���(t) +p3z2t � z3t
�
; �(t) = �c � A cos(2�t): (6.20)

Note that zt is monotonously decreasing and �(t) 6 0 for the times under consideration.

The linearization of the drift term F at zt is a(t) = 2
p
3zt � 3z2t . It follows that for

t?1 6 s 6 t 6 t?2,

�(t; s) =

Z t

s
a(u) du 6 "

Z zt

zs

2
p
3z � 3z2p
3z2 � z3

dz = " log

�
z
2
t (
p
3� zt)

z2s (
p
3� zs)

�
; (6.21)

and thus

e�(t;s)=" 6
z2t (
p
3� zt)

z2s (
p
3� zs)

� z2t

z2s

: (6.22)

More careful estimates, based on the inequalities

1

"

�p
3z2t � z3t

�
6

dz

dt
6

1

"

�
ct +

p
3z2t

�
; (6.23)

show that e�(t;s)=" is also bounded below by a constant times (zt=zs)
2. Now �(t) can be

computed in the same way, by performing the change of variables s 7! zs, yielding (6.18).

Finally, (6.19) follows easily from the fact that we are again in the stable case for t > t
?
2.

We now return to the SDE (4.2) for a(t) given by (3.18) and b(y; t) = F (y; t)� a(t)y.
Following the proof of [BG2, Proposition 3.10], it is easy to establish (4.9) for all h 6

h0("
p
a0)

5=6 and all t. The condition on h stems from the fact that the linear term a(t)yt

should dominate the nonlinear term b(yt; t) for all realizations ! satisfying jyt(!)j 6 h
p
�(t)

8t.
The condition on h implies that we need to require � 6 ("

p
a0 )

5=6 for (4.9) to be

of interest. Then the maximal spreading of paths will typically be of order �
p
�(t?2) �

�("
p
a0 )

�5=6.
Since ja0(t)j is no longer bounded for t?1 6 t 6 t

?
2, we cannot apply Lemma 4.11 to

compute the integrals (4.25) and (4.26). However, using the same change of variables as

in the proof of Proposition 6.2, it is not di�cult to establish that

�1(0; t0) � ("
p
a0 )

�2=3 and �(0; t0) � "
�2=3

a
1=6
0 ; (6.24)

where again t0 = �1=2.
The following proposition now follows immediately from Corollary 4.10.

Proposition 6.3. Assume that � 6 ("
p
a0 )

5=6. There exists a constant h1 such that for

H 6 h1"
p
a0,

P
t0;x0

�jY0j > H
	
6
C

"
exp

n
�� H2

�2("
p
a0 )

1=3

o
: (6.25)

Finally, Proposition 4.7 can also be applied to show that for �jlog "j 6 const ("
p
a0)

5=6,

��E t0 ;x0�Y0	�� = O
�
�
2jlog "j

("
p
a0 )

2=3

�
(6.26)

Var (Y0) � �
2("
p
a0)

1=3
: (6.27)
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6.3 The case IIb

For � larger than ("
p
a0 )

5=6, the strong dispersion of trajectories near time t?2 prevents us

from applying methods of Section 4. However, methods similar to those of Section 5 can

be applied to obtain some information.

The following result allows to estimate deviations of Yt? in a larger domain than Propo-

sition 4.9.

Proposition 6.4. There exist constants C, �, h1 > 0 such that

P
t0;x0

�
Yt? < �H	 6 C

"
e��(H

3=2_"pa0 )=�2 (6.28)

P
t0;x0

�
Yt? > +H

	
6 e��H

2=(�2")+
C

"
e��H=(�2�1(t

?;t0)) (6.29)

for 0 6 H 6 h1("
p
a0 )

1=3�1(t
?
; t0), where �1(t

?
; t0) � jlog("2=3a�1=60 )j.

Proof: The proof is almost the same as the proof of Proposition 5.4, the only di�erence

lying in the di�erent behaviour of �(t), given in (6.1), which requires to distinguish between

� + tc 6 �pa0, �pa0 6 � + tc 6 �"2=3a�1=60 , and the remaining � up to t?.

Proceeding as in the proof of Proposition 5.5, but using Proposition 6.1 for the transi-

tion time, we obtain

Proposition 6.5. There exist constants C, �, h2, h3 > 0 such that for all xt1 2 [�L; L]
(L � 1), and h2("

p
a0 )

2=3jlog("pa0)j 6 H 6 h3,

P
t?;xt?

�
Y0 < �H	 6 C

"
e��H=�2 +e��H

2=(�2") (6.30)

P
t?;xt?

�
Y0 > +H

	
6
C

"
e��("

p
a0 )

1=3H=(�2jlog("pa0 )j) : (6.31)

Corollary 6.6. For h2("
p
a0)

2=3jlog("pa0 )j 6 h1("
p
a0 )

1=3�1(t
?; t0),

P
t0;x0

�
Y0 < �H	 6 C

"
e��H

3=2=�2 (6.32)

P
t0;x0

�
Y0 > +H

	
6
C

"
e��("

p
a0 )

1=3H=(�2jlog("pa0 )j) : (6.33)

The required lower bound on H only allows us to conclude that expectation and stan-

dard deviation of Y0 are smaller than a constant times ("
p
a0 )

2=3jlog("pa0)j, although the

above estimates are already very small for H = h2("
p
a0 )

2=3jlog("pa0 )j.
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