960 research outputs found

    The Great Flare of 2021 November 19 on AD Leonis: Simultaneous XMM-Newton and TESS observations

    Get PDF
    We present a detailed analysis of a superflare on the active M dwarf star AD Leonis. The event presents a rare case of a stellar flare that was simultaneously observed in X-rays (with XMM-Newton) and in the optical (with the Transiting Exoplanet Survey Satellite, TESS). The radiated energy in the 0.2 - 12 keV X-ray band (1.26 +/- 0.01 x 10(33) erg) and the bolometric value (E-F,E-bol=5.57 +/- 0.03 x 10(33) erg) place this event at the lower end of the superflare class. The exceptional photon statistics deriving from the proximity of AD Leo has enabled measurements in the 1 - 8 angstrom GOES band for the peak flux (X1445 class) and integrated energy (E-F,E-GOES=4.30 +/- 0.05 x 10(32) erg), which enables a direct comparison with data on flares from our Sun. From extrapolations of empirical relations for solar flares, we estimate that a proton flux of at least 10(5)cm(-2)s(-1)sr(-1) accompanied the radiative output. With a time lag of 300 s between the peak of the TESS white-light flare and the GOES band flare peak as well as a clear Neupert effect, this event follows the standard (solar) flare scenario very closely. Time-resolved spectroscopy during the X-ray flare reveals, in addition to the time evolution of plasma temperature and emission measure, a temporary increase in electron density and elemental abundances, and a loop that extends into the corona by 13% of the stellar radius (4 x 10(9) cm). Independent estimates of the footprint area of the flare from TESS and XMM-Newton data suggest a high temperature of the optical flare (25000 K), but we consider it more likely that the optical and X-ray flare areas represent physically distinct regions in the atmosphere of AD Leo

    MsbA-dependent translocation of lipids across the inner membrane of Escherichia coli

    Get PDF
    MsbA is an essential ABC transporter in Escherichia coli required for exporting newly synthesized lipids from the inner to the outer membrane. It remains uncertain whether or not MsbA catalyzes trans-bilayer lipid movement (i.e. flip-flop) within the inner membrane. We now show that newly synthesized lipid A accumulates on the cytoplasmic side of the inner membrane after shifting an E. coli msbA missense mutant to the non-permissive temperature. This conclusion is based on the selective inhibition of periplasmic, but not cytoplasmic, covalent modifications of lipid A that occur in polymysin-resistant strains of E. coli. The accessibility of newly synthesized phosphatidylethanolamine to membrane impermeable reagents, like 2,4,6-trinitrobenzene sulfonic acid, is also reduced severalfold. Our data showed that MsbA facilitates the rapid translocation of some lipids from the cytoplasmic to the periplasmic side of the inner membrane in living cells

    Transit observations at the observatory in Grossschwabhausen: XO-1b and TrES-1

    Get PDF
    We report on observations of transit events of the transiting planets XO-1b and TrES-1 with the AIU Jena telescope in Grossschwabhausen. Based on our IR photometry (in March 2007) and available transit timings (SuperWASP, XO and TLC-project-data) we improved the orbital period of XO-1b (P = 3.941497±\pm0.000006) and TrES-1 (P = 3.0300737±\pm0.000006), respectively. The new ephemeris for the both systems are presented.Comment: 4 pages, 2 figure

    Portraying the hosts: Stellar science from planet searches

    Full text link
    Information on the full session can be found on this website: https://sites.google.com/site/portrayingthehostscs18/We present a compendium of the splinter session on stellar science from planet searches that was organized as part of the Cool Stars 18 conference. Seven speakers discussed techniques to infer stellar information from radial velocity, transit and microlensing data, as well as new instrumentation and missions designed for planet searches that will provide useful for the study of the cool stars

    Complete X-ray census of Mdwarfs in the solar Neighborhood I. GJ 745 AB: Coronal-hole Stars in the 10 pc Sample

    Full text link
    We have embarked in a systematic study of the X-ray emission in a volume-limited sample of M dwarf stars, in order to explore the full range of activity levels present in their coronae and, thus, to understand the conditions in their outer atmospheres and their possible impact on the circumstellar environment. We identify in a recent catalog of the Gaia objects within 10 pc from the Sun all the stars with spectral type between M0 and M4, and search systematically for X-ray measurements of this sample. To this end, we use both archival data (from ROSAT, XMM-Newton, and from the ROentgen Survey with an Imaging Telescope Array (eROSITA) onboard the Russian Spektrum-Roentgen-Gamma mission) and our own dedicated XMM-Newton observations. To make inferences on the properties of the M dwarf corona we compare the range of their observed X-ray emission levels to the flux radiated by the Sun from different types of magnetic structures: coronal holes, background corona, active regions and cores of active regions. At the current state of our project, with more than 90\% of the 10pc M dwarf sample observed in X-rays, only GJ 745 A has no detection. With an upper limit luminosity of log Lx [erg/s] < 25.4 and an X-ray surface flux of log FX,SURF [erg/cm^2/s] < 3.6 GJ 745 A defines the lower boundary of the X-ray emission level of M dwarfs. Together with its companion GJ 745 B, GJ 745 A it is the only star in this volume-complete sample located in the range of FX,SURF that corresponds to the faintest solar coronal structures, the coronal holes. The ultra-low X-ray emission level of GJ 745 B (log Lx [erg/s] = 25.6 and log FX,SURF [erg/cm^2/s] = 3.8) is entirely attributed to flaring activity, indicating that, while its corona is dominated by coronal holes, at least one magnetically active structure is present and determines the total X-ray brightness and the coronal temperature of the star.Comment: accepted for publication in Astronomy & Astrophysics (A&A

    Constraints on a second planet in the WASP-3 system

    Get PDF
    There have been previous hints that the transiting planet WASP-3 b is accompanied by a second planet in a nearby orbit, based on small deviations from strict periodicity of the observed transits. Here we present 17 precise radial velocity measurements and 32 transit light curves that were acquired between 2009 and 2011. These data were used to refine the parameters of the host star and transiting planet. This has resulted in reduced uncertainties for the radii and masses of the star and planet. The radial-velocity data and the transit times show no evidence for an additional planet in the system. Therefore, we have determined the upper limit on the mass of any hypothetical second planet, as a function of its orbital period.Comment: Accepted for publication in The Astronomical Journa

    New transit observations for HAT-P-30 b, HAT-P-37 b, TrES-5 b, WASP-28 b, WASP-36 b, and WASP-39 b

    Get PDF
    We present new transit light curves for planets in six extrasolar planetary systems. They were acquired with 0.4-2.2 m telescopes located in west Asia, Europe, and South America. When combined with literature data, they allowed us to redetermine system parameters in a homogeneous way. Our results for individual systems are in agreement with values reported in previous studies. We refined transit ephemerides and reduced uncertainties of orbital periods by a factor between 2 and 7. No sign of any variations in transit times was detected for the planets studied.Comment: Submitted to Acta Astronomic

    Diagnosing the Clumpy Protoplanetary Disk of the UXor Type Young Star GM Cephei

    Full text link
    UX Orionis stars (UXors) are Herbig Ae/Be or T Tauri stars exhibiting sporadic occultation of stellar light by circumstellar dust. GM\,Cephei is such a UXor in the young (4\sim4~Myr) open cluster Trumpler\,37, showing prominent infrared excess, emission-line spectra, and flare activity. Our photometric monitoring (2008--2018) detects (1)~an \sim3.43~day period, likely arising from rotational modulation by surface starspots, (2)~sporadic brightening on time scales of days due to accretion, (3)~irregular minor flux drops due to circumstellar dust extinction, and (4)~major flux drops, each lasting for a couple of months with a recurrence time, though not exactly periodic, of about two years. The star experiences normal reddening by large grains, i.e., redder when dimmer, but exhibits an unusual "blueing" phenomenon in that the star turns blue near brightness minima. The maximum extinction during relatively short (lasting 50\leq 50~days) events, is proportional to the duration, a consequence of varying clump sizes. For longer events, the extinction is independent of duration, suggestive of a transverse string distribution of clumps. Polarization monitoring indicates an optical polarization varying 3%\sim3\%--8%\%, with the level anticorrelated with the slow brightness change. Temporal variation of the unpolarized and polarized light sets constraints on the size and orbital distance of the circumstellar clumps in the interplay with the young star and scattering envelope. These transiting clumps are edge-on manifestations of the ring- or spiral-like structures found recently in young stars with imaging in infrared of scattered light, or in submillimeter of thermalized dust emission.Comment: 20 pages, 9 figure
    corecore