1,238 research outputs found

    Interferometry and higher-dimensional phase measurements using directionally unbiased linear optics

    Full text link
    Grover multiports are higher-dimensional generalizations of beam splitters, in which input to any one of the four ports has equal probability of exiting at any of the same four ports, including the input port. In this paper, we demonstrate that interferometers built from such multiports have novel features. For example, when combined with two-photon input and coincidence measurements, it is shown that such interferometers have capabilities beyond those of standard beam-splitter-based interferometers, such as easily controlled interpolation between Hong-Ou-Mandel (HOM) and anti-HOM behavior. Further, it is shown that the Grover-based analog of the Mach-Zehnder interferometer can make three separate phase measurements simultaneously. By arranging the transmission lines between the two multiports to lie in different planes, the same interferometer acts as a higher-dimensional Sagnac interferometer, allowing rotation rates about three different axes to be measured with a single device

    Enhanced-sensitivity interferometry with phase-sensitive unbiased multiports

    Full text link
    Here we introduce interferometric devices by combining optical feedback (cavities) with unbiased multiports, which unlike traditional beam dividers, allow light to reflect back out of the port from which it originated. By replacing the traditional, directionally-biased beam-splitter in a Michelson interferometer with an unbiased multiport, the functional dependence of the scattering amplitudes changes. As a result, the derivative of transmittance with respect to an external phase perturbation can be made substantially large. This significantly enhances the resolution of phase measurement, and allows the phase response curves to be altered in real time by tuning an externally-controllable phase shift

    Particle shape optimization by changing from an isotropic to an anisotropic nanostructure: preparation of highly active and stable supported Pt catalysts in microemulsions

    Get PDF
    We recently introduced a new method to synthesize an active and stable Pt catalyst, namely thermo-destabilization of microemulsions (see R. Y. Parapat, V. Parwoto, M. Schwarze, B. Zhang, D. S. Su and R. Schomäcker, J. Mater. Chem., 2012, 22 (23), 11605–11614). We are able to produce Pt nanocrystals with a small size (2.5 nm) of an isotropic structure i.e. truncated octahedral and deposit them well on support materials. Although we have obtained good results, the performance of the catalyst still needed to be improved and optimized. We followed the strategy to retain the small size but change the shape to an anisotropic structure of Pt nanocrystals which produces more active sites by means of a weaker reducing agent. We found that our catalysts are more active than those we reported before and even show the potential to be applied in a challenging reaction such as hydrogenation of levulinic acid

    Statistical mechanics of mutual information maximization

    Get PDF
    An unsupervised learning procedure based on maximizing the mutual information between the outputs of two networks receiving different but statistically dependent inputs is analyzed (Becker S. and Hinton G., Nature, 355 (1992) 161). By exploiting a formal analogy to supervised learning in parity machines, the theory of zero-temperature Gibbs learning for the unsupervised procedure is presented for the case that the networks are perceptrons and for the case of fully connected committees

    Bombyx mori silk/titania/gold hybrid materials for photocatalytic water splitting: combining renewable raw materials with clean fuels

    Get PDF
    The synthesis, structure, and photocatalytic water splitting performance of two new titania (TiO2)/gold(Au)/Bombyx mori silk hybrid materials are reported. All materials are monoliths with diameters of up to ca. 4.5 cm. The materials are macroscopically homogeneous and porous with surface areas between 170 and 210 m2/g. The diameter of the TiO2 nanoparticles (NPs) – mainly anatase with a minor fraction of brookite – and the Au NPs are on the order of 5 and 7–18 nm, respectively. Addition of poly(ethylene oxide) to the reaction mixture enables pore size tuning, thus providing access to different materials with different photocatalytic activities. Water splitting experiments using a sunlight simulator and a Xe lamp show that the new hybrid materials are effective water splitting catalysts and produce up to 30 mmol of hydrogen per 24 h. Overall the article demonstrates that the combination of a renewable and robust scaffold such as B. mori silk with a photoactive material provides a promising approach to new monolithic photocatalysts that can easily be recycled and show great potential for application in lightweight devices for green fuel production

    Retarded Learning: Rigorous Results from Statistical Mechanics

    Full text link
    We study learning of probability distributions characterized by an unknown symmetry direction. Based on an entropic performance measure and the variational method of statistical mechanics we develop exact upper and lower bounds on the scaled critical number of examples below which learning of the direction is impossible. The asymptotic tightness of the bounds suggests an asymptotically optimal method for learning nonsmooth distributions.Comment: 8 pages, 1 figur

    Readout for intersatellite laser interferometry: Measuring low frequency phase fluctuations of HF signals with microradian precision

    Full text link
    Precision phase readout of optical beat note signals is one of the core techniques required for intersatellite laser interferometry. Future space based gravitational wave detectors like eLISA require such a readout over a wide range of MHz frequencies, due to orbit induced Doppler shifts, with a precision in the order of μrad/Hz\mu \textrm{rad}/\sqrt{\textrm{Hz}} at frequencies between 0.1mHz0.1\,\textrm{mHz} and 1Hz1\,\textrm{Hz}. In this paper, we present phase readout systems, so-called phasemeters, that are able to achieve such precisions and we discuss various means that have been employed to reduce noise in the analogue circuit domain and during digitisation. We also discuss the influence of some non-linear noise sources in the analogue domain of such phasemeters. And finally, we present the performance that was achieved during testing of the elegant breadboard model of the LISA phasemeter, that was developed in the scope of an ESA technology development activity.Comment: submitted to Review of Scientific Instruments on April 30th 201

    Implementation of a Simplified Regional Citrate Anticoagulation Protocol for Post-Dilution Continuous Hemofiltration Using a Bicarbonate Buffered, Calcium Containing Replacement Solution

    Get PDF
    This service development program and open access publication of this manuscript have been supported by an unrestricted education grant from Nikkiso Europe GmbH, Hannover, Germany

    Cost-benefit analysis of flood-zoning policies: A review of current practice

    Get PDF
    One commonly proposed method to limit flood risk is land-use or zoning policies which regulates construction in high-risk areas, in order to reduce economic exposure and its vulnerability to flood events. Although such zoning regulations can be effective in limiting trends in flood risk, they also have adverse impacts on society, for instance by limiting local development of areas near the water. In order to judge whether proposed land-use or zoning policies are a net benefit to society, they should be accepted or rejected based on a societal cost–benefit analysis (CBA). However, conducting a CBA of zoning regulation is complex and comprehensive guidelines of how to do such an analysis are lacking. We offer guidelines for good practice. In order to assess the costs and benefits of zoning as a climate change adaption strategy, they should be assessed at a societal level in order to account for public good features of flood risk reduction strategies, and because costs in one area can be benefits in another region. We propose a multistep process: first, determine the spatial extent of the zoning policy and how interconnected the zoned area is to other locations; second, conduct a CBA using monetary costs and benefits estimated from an integrated hydro-economic model to investigate if total benefits exceed total costs; third, conduct a sensitivity analysis regarding the main assumptions; fourth, conduct a multicriteria analysis (MCA) of the normative outcomes of a zoning policy. A desirable policy is preferred in both the CBA and MCA
    corecore