205 research outputs found
Challenges in the use of NG2 antigen as a marker to predict MLL rearrangements in multi-center studies
AbstractRearrangements in MLL (MLL-r) are common within very young children with leukemia and affect the prognosis and treatment. Previous studies have suggested the use of the NG2 molecule as a marker for MLL-r but these studies were performed using a small number of infants. We analyzed 148 patients (all less than 24 months, 86 less than 12 months) from various centers in Brazil to determine the predictive power of NG2 within that cohort. We show that NG2 can be used for MLL-r prediction; however, proper staff training and standardized sampling procedures are essential when receiving samples from multiple centers as the accuracy of the prediction varies greatly on a per center basis
INDOLE AMIDE DERIVATIVES: SYNTHESIS, STUCTURE-ACTIVITY RELATIONSHIPS AND MOLECULAR MODELLING STUDIES OF A NEW SERIES OF HISTAMINE H1-RECEPTOR ANTAGONISTS.
A number of indole amide derivatives bearing a basic side chain, in which the indole ring replaces the isoster benzimidazole nucleus typical of some well-known antihistamines, were prepared and tested for their H1-antihistaminic activity. The 1-benzyl-3-indolecarboxamides 32–42 showed antihistaminic (H1) activity (pA2 6–8); the 3-indolylglyoxylylamides 7–16 and the 2-indolecarboxamides 48–56 showed little or no activity. Insertion of the basic side chain of the active 3-indolecarboxamide derivatives into a piperazine ring (compounds 57–59) led to a dramatic loss of activity. All the active compounds proved to be competitive antagonists, since the values of the regression slope were not statistically different from 1. The most active compounds, 32, 33, 38–41, were also tested both in vitro for their anticholinergic activity and in vivo for their ability to antagonize histamine-induced cutaneous vascular permeability in rats. The biological results and the structure–activity relationships of the novel compounds are discussed in the light of molecular modelling studies, taking the molecule of astemizole as a model, and referring to proposed H1-receptor pharmacophore model
Pharmacological characterization of a new Ca2+ sensitizer
The benzimidazole molecule was modified to synthesize a Ca(2+) sensitizer devoid of additional effects associated with Ca(2+) overload. Newly synthesized compounds, termed 1, 2, 3, 4, and 5, were evaluated in spontaneously beating and electrically driven atria from reserpine-treated guinea pigs. Compound 3 resulted as the most effective positive inotropic agent, and experiments were performed to study its mechanism of action. In spontaneously beating atria, the inotropic effect of 3 was concentration-dependent (3.0 microM-0.3 mM). Compound 3 was more potent and more active than the structurally related Ca(2+) sensitizers sulmazole and caffeine, but unlike them it did not increase the heart rate. In electrically driven atria, the inotropic activity of 3 was well preserved and it was not inhibited by propranolol, prazosin, ranitidine, pyrilamine, carbachol, adenosine deaminase, or ruthenium red. At high concentrations (0.1-1.0 mM) 3 inhibited phosphodiesterase-III, whereas it did not affect Na(+)/K(+)-ATPase, sarcolemmal Ca(2+)-ATPase, Na(+)/Ca(2+) exchange carrier, or sarcoplasmic reticulum Ca(2+) pump activities of guinea pig heart. In skinned fibers obtained from guinea pig papillary muscle and skeletal soleus muscle, compound 3 (0.1 mM, 1 mM) shifted the pCa/tension relation curve to the left, with no effect on maximal tension and no signs of toxicity. Compound 3 did not influence the basal or raised tone of guinea pig isolated aorta rings, whose cells do not contain the contractile protein troponin. The present results indicate that the inotropic effect of compound 3 seems to be primarily sustained by sensitization of the contractile proteins to Ca(2+)
Synchronous down-modulation of miR-17 family members is an early causative event in the retinal angiogenic switch
Six members of the microRNA-17 (miR-17) family were mapped to three different chromosomes, although they share the same seed sequence and are predicted to target common genes, among which are those encoding hypoxia-inducible factor-1α (HIF1A) and VEGFA. Here, we evaluated the in vivo expression profile of the miR-17 family in the murine retinopathy of prematurity (ROP) model, whereby Vegfa expression is highly enhanced at the early stage of retinal neovascularization, and we found simultaneous reduction of all miR-17 family members at this stage. Using gene reporter assays, we observed binding of these miRs to specific sites in the 3′ UTRs of Hif1a and Vegfa. Furthermore, overexpression of these miRs decreased HIF1A and VEGFA expression in vitro. Our data indicate that this miR-17 family elicits a regulatory synergistic down-regulation of Hif1a and Vegfa expression in this biological model. We propose the existence of a coordinated regulatory network, in which diverse miRs are synchronously regulated to target the Hif1a transcription factor, which in turn, potentiates and reinforces the regulatory effects of the miRs on Vegfa to trigger and sustain a significant physiological response
Temperament and Impulsivity Predictors of Smoking Cessation Outcomes
Aims:
Temperament and impulsivity are powerful predictors of addiction treatment outcomes. However, a comprehensive assessment of these features has not been examined in relation to smoking cessation outcomes.Methods:
Naturalistic prospective study. Treatment-seeking smokers (n = 140) were recruited as they engaged in an occupational health clinic providing smoking cessation treatment between 2009 and 2013. Participants were assessed at baseline with measures of temperament (Temperament and Character Inventory), trait impulsivity (Barratt Impulsivity Scale), and cognitive impulsivity (Go/No Go, Delay Discounting and Iowa Gambling Task). The outcome measure was treatment status, coded as “dropout” versus “relapse” versus “abstinence” at 3, 6, and 12 months endpoints. Participants were telephonically contacted and reminded of follow-up face to face assessments at each endpoint. The participants that failed to answer the phone calls or self-reported discontinuation of treatment and failed to attend the upcoming follow-up session were coded as dropouts. The participants that self-reported continuing treatment, and successfully attended the upcoming follow-up session were coded as either “relapse” or “abstinence”, based on the results of smoking behavior self-reports cross-validated with co-oximetry hemoglobin levels. Multinomial regression models were conducted to test whether temperament and impulsivity measures predicted dropout and relapse relative to abstinence outcomes.Results:
Higher scores on temperament dimensions of novelty seeking and reward dependence predicted poorer retention across endpoints, whereas only higher scores on persistence predicted greater relapse. Higher scores on the trait dimension of non-planning impulsivity but not performance on cognitive impulsivity predicted poorer retention. Higher non-planning impulsivity and poorer performance in the Iowa Gambling Task predicted greater relapse at 3 and 6 months and 6 months respectively.Conclusion:
Temperament measures, and specifically novelty seeking and reward dependence, predict smoking cessation treatment retention, whereas persistence, non-planning impulsivity and poor decision-making predict smoking relapse.This research was funded by the Occupational Medicine Area (Prevention Service); Department of Personality, Assessment and Psychological Treatment, University of Granada (Spain); and Ministerio de EconomĂa y Competitividad grant (MINICO, ref. # PSI2013-45055-P) for the first and second authors
An evaluation of emerging feed additives to reduce methane emissions from livestock
The inclusion of feed additives in livestock diets or supplements is a routine global nutritional management practice. Consequently, the existing commercial feed additive marketing and delivery pathways will be able to deliver rapid market penetration of feed additives specifically developed to reduce enteric methane emissions. So, the delivery path is clear, but are the methane mitigating additives available, effective, and are there any constraints or risks associated with their use? To answer these questions an assessment of the ten leading classes of compounds being studied for methane mitigation efficacy in ruminants was made. The assessment is provided as a concise resource that can serve as an evidence base to guide investment and management decisions by all actors in the livestock additive supply chain
Prelimbic and Infralimbic Prefrontal Cortex Interact during Fast Network Oscillations
Background: The medial prefrontal cortex has been implicated in a variety of cognitive and executive processes such as decision making and working memory. The medial prefrontal cortex of rodents consists of several areas including the prelimbic and infralimbic cortex that are thought to be involved in different aspects of cognitive performance. Despite the distinct roles in cognitive behavior that have been attributed to prelimbic and infralimbic cortex, little is known about neuronal network functioning of these areas, and whether these networks show any interaction during fast network oscillations. Methodology/Principal Findings: Here we show that fast network oscillations in rat infralimbic cortex slices occur at higher frequencies and with higher power than oscillations in prelimbic cortex. The difference in oscillation frequency disappeared when prelimbic and infralimbic cortex were disconnected. Conclusions/Significance: Our data indicate that neuronal networks of prelimbic and infralimbic cortex can sustain fast network oscillations independent of each other, but suggest that neuronal networks of prelimbic and infralimbic cortex ar
Counteractive effects of antenatal glucocorticoid treatment on D1 receptor modulation of spatial working memory
RATIONALE: Antenatal exposure to the glucocorticoid dexamethasone dramatically increases the number of mesencephalic dopaminergic neurons in rat offspring. However, the consequences of this expansion in midbrain dopamine (DA) neurons for behavioural processes in adulthood are poorly understood, including working memory that depends on DA transmission in the prefrontal cortex (PFC). OBJECTIVES: We therefore investigated the influence of antenatal glucocorticoid treatment (AGT) on the modulation of spatial working memory by a D1 receptor agonist and on D1 receptor binding and DA content in the PFC and striatum. METHODS: Pregnant rats received AGT on gestational days 16-19 by adding dexamethasone to their drinking water. Male offspring reared to adulthood were trained on a delayed alternation spatial working memory task and administered the partial D1 agonist SKF38393 (0.3-3Â mg/kg) by systemic injection. In separate groups of control and AGT animals, D1 receptor binding and DA content were measured post-mortem in the PFC and striatum. RESULTS: SKF38393 impaired spatial working memory performance in control rats but had no effect in AGT rats. D1 binding was significantly reduced in the anterior cingulate cortex, prelimbic cortex, dorsal striatum and ventral pallidum of AGT rats compared with control animals. However, AGT had no significant effect on brain monoamine levels. CONCLUSIONS: These findings demonstrate that D1 receptors in corticostriatal circuitry down-regulate in response to AGT. This compensatory effect in D1 receptors may result from increased DA-ergic tone in AGT rats and underlie the resilience of these animals to the disruptive effects of D1 receptor activation on spatial working memory
Developmental disruption of perineuronal nets in the medial prefrontal cortex after maternal immune activation
© The Author(s) 2016. Maternal infection during pregnancy increases the risk of offspring developing schizophrenia later in life. Similarly, animal models of maternal immune activation (MIA) induce behavioural and anatomical disturbances consistent with a schizophrenia-like phenotype in offspring. Notably, cognitive impairments in tasks dependent on the prefrontal cortex (PFC) are observed in humans with schizophrenia and in offspring after MIA during pregnancy. Recent studies of post-mortem tissue from individuals with schizophrenia revealed deficits in extracellular matrix structures called perineuronal nets (PNNs), particularly in PFC. Given these findings, we examined PNNs over the course of development in a well-characterized rat model of MIA using polyinosinic-polycytidylic acid (polyI:C). We found selective reductions of PNNs in the PFC of polyI:C offspring which did not manifest until early adulthood. These deficits were not associated with changes in parvalbumin cell density, but a decrease in the percentage of parvalbumin cells surrounded by a PNN. Developmental expression of PNNs was also significantly altered in the amygdala of polyI:C offspring. Our results indicate MIA causes region specific developmental abnormalities in PNNs in the PFC of offspring. These findings confirm the polyI:C model replicates neuropathological alterations associated with schizophrenia and may identify novel mechanisms for cognitive and emotional dysfunction in the disorder
Influence of Dopaminergically Mediated Reward on Somatosensory Decision-Making
This pharmacological fMRI study shows that during reward-based sensory decision-making, dopamine is crucially involved in reward-related modulation of human primary sensory cortex
- …