367 research outputs found

    Spectrum Orbit Utilization Program Documentation: SOUP5 Version 3.8 User's Manual, Volume 2, Appendices a Through G

    Get PDF
    The appendixes of the user manual are presented. Input forms which may be used to prepare data for the SOUP5V3.4 of the R2BCSAT-83 data base are given. The IBM job control language which can be used to run the SOUP5 system from a magnetic tape is described. Copies of a run using the delivered tape and IBM OS/MVS Job Control Language card deck are illustrated. Numerical limits on scenario data requests are listed. Error handling, error messages and editing procedures are also listed. Instructions as to how to enter a protection ratio template are given. And relation between PARC prameter, channelization, channel families, and interference categories are also listed

    An atypical receiver domain controls the dynamic polar localization of the Myxococcus xanthus social motility protein FrzS

    Get PDF
    The Myxococcus xanthus FrzS protein transits from pole-to-pole within the cell, accumulating at the pole that defines the direction of movement in social (S) motility. Here we show using atomic-resolution crystallography and NMR that the FrzS receiver domain (RD) displays the conserved switch Tyr102 in an unusual conformation, lacks the conserved Asp phosphorylation site, and fails to bind Mg2+ or the phosphoryl analogue, Mg2+·BeF3. Mutation of Asp55, closest to the canonical site of RD phosphorylation, showed no motility phenotype in vivo, demonstrating that phosphorylation at this site is not necessary for domain function. In contrast, the Tyr102Ala and His92Phe substitutions on the canonical output face of the FrzS RD abolished S-motility in vivo. Single-cell fluorescence microscopy measurements revealed a striking mislocalization of these mutant FrzS proteins to the trailing cell pole in vivo. The crystal structures of the mutants suggested that the observed conformation of Tyr102 in the wild-type FrzS RD is not sufficient for function. These results support the model that FrzS contains a novel ‘pseudo-receiver domain’ whose function requires recognition of the RD output face but not Asp phosphorylation

    Localized states in strong magnetic field: resonant scattering and the Dicke effect

    Full text link
    We study the energy spectrum of a system of localized states coupled to a 2D electron gas in strong magnetic field. If the energy levels of localized states are close to the electron energy in the plane, the system exhibits a kind of collective behavior analogous to the Dicke effect in optics. The latter manifests itself in ``trapping'' of electronic states by localized states. At the same time, the electronic density of states develops a gap near the resonance. The gap and the trapping of states appear to be complementary and reflect an intimate relation between the resonant scattering and the Dicke effect. We reveal this relation by presenting the exact solution of the problem for the lowest Landau level. In particular, we show that in the absence of disorder the system undergoes a phase transition at some critical concentration of localized states.Comment: 28 pages + 9 fig

    Quantum dynamics in strong fluctuating fields

    Full text link
    A large number of multifaceted quantum transport processes in molecular systems and physical nanosystems can be treated in terms of quantum relaxation processes which couple to one or several fluctuating environments. A thermal equilibrium environment can conveniently be modelled by a thermal bath of harmonic oscillators. An archetype situation provides a two-state dissipative quantum dynamics, commonly known under the label of a spin-boson dynamics. An interesting and nontrivial physical situation emerges, however, when the quantum dynamics evolves far away from thermal equilibrium. This occurs, for example, when a charge transferring medium possesses nonequilibrium degrees of freedom, or when a strong time-dependent control field is applied externally. Accordingly, certain parameters of underlying quantum subsystem acquire stochastic character. Herein, we review the general theoretical framework which is based on the method of projector operators, yielding the quantum master equations for systems that are exposed to strong external fields. This allows one to investigate on a common basis the influence of nonequilibrium fluctuations and periodic electrical fields on quantum transport processes. Most importantly, such strong fluctuating fields induce a whole variety of nonlinear and nonequilibrium phenomena. A characteristic feature of such dynamics is the absence of thermal (quantum) detailed balance.Comment: review article, Advances in Physics (2005), in pres

    Active Brownian Particles. From Individual to Collective Stochastic Dynamics

    Full text link
    We review theoretical models of individual motility as well as collective dynamics and pattern formation of active particles. We focus on simple models of active dynamics with a particular emphasis on nonlinear and stochastic dynamics of such self-propelled entities in the framework of statistical mechanics. Examples of such active units in complex physico-chemical and biological systems are chemically powered nano-rods, localized patterns in reaction-diffusion system, motile cells or macroscopic animals. Based on the description of individual motion of point-like active particles by stochastic differential equations, we discuss different velocity-dependent friction functions, the impact of various types of fluctuations and calculate characteristic observables such as stationary velocity distributions or diffusion coefficients. Finally, we consider not only the free and confined individual active dynamics but also different types of interaction between active particles. The resulting collective dynamical behavior of large assemblies and aggregates of active units is discussed and an overview over some recent results on spatiotemporal pattern formation in such systems is given.Comment: 161 pages, Review, Eur Phys J Special-Topics, accepte

    Boundary-layer turbulence as a kangaroo process

    Get PDF
    A nonlocal mixing-length theory of turbulence transport by finite size eddies is developed by means of a novel evaluation of the Reynolds stress. The analysis involves the contruct of a sample path space and a stochastic closure hypothesis. The simplifying property of exhange (strong eddies) is satisfied by an analytical sampling rate model. A nonlinear scaling relation maps the path space onto the semi-infinite boundary layer. The underlying near-wall behavior of fluctuating velocities perfectly agrees with recent direct numerical simulations. The resulting integro-differential equation for the mixing of scalar densities represents fully developed boundary-layer turbulence as a nondiffusive (Kubo-Anderson or kangaroo) type of stochastic process. The model involves a scaling exponent (with → in the diffusion limit). For the (partly analytical) solution for the mean velocity profile, excellent agreement with the experimental data yields 0.58. © 1995 The American Physical Society

    Somatic Variants in SVIL in Cerebral Aneurysms

    Get PDF
    Publisher Copyright: © American Academy of Neurology.Background and ObjectivesWhile somatic mutations have been well-studied in cancer, their roles in other complex traits are much less understood. Our goal is to identify somatic variants that may contribute to the formation of saccular cerebral aneurysms.MethodsWe performed whole-exome sequencing on aneurysm tissues and paired peripheral blood. RNA sequencing and the CRISPR/Cas9 system were then used to perform functional validation of our results.ResultsSomatic variants involved in supervillin (SVIL) or its regulation were found in 17% of aneurysm tissues. In the presence of a mutation in the SVIL gene, the expression level of SVIL was downregulated in the aneurysm tissue compared with normal control vessels. Downstream signaling pathways that were induced by knockdown of SVIL via the CRISPR/Cas9 system in vascular smooth muscle cells (vSMCs) were determined by evaluating changes in gene expression and protein kinase phosphorylation. We found that SVIL regulated the phenotypic modulation of vSMCs to the synthetic phenotype via Krüppel-like factor 4 and platelet-derived growth factor and affected cell migration of vSMCs via the RhoA/ROCK pathway.DiscussionWe propose that somatic variants form a novel mechanism for the development of cerebral aneurysms. Specifically, somatic variants in SVIL result in the phenotypic modulation of vSMCs, which increases the susceptibility to aneurysm formation. This finding suggests a new avenue for the therapeutic intervention and prevention of cerebral aneurysms.Peer reviewe

    Probing and controlling fluorescence blinking of single semiconductor nanoparticles

    Get PDF
    In this review we present an overview of the experimental and theoretical development on fluorescence intermittency (blinking) and the roles of electron transfer in semiconductor crystalline nanoparticles. Blinking is a very interesting phenomenon commonly observed in single molecule/particle experiments. Under continuous laser illumination, the fluorescence time trace of these single nanoparticles exhibit random light and dark periods. Since its first observation in the mid-1990s, this intriguing phenomenon has attracted wide attention among researchers from many disciplines. We will first present the historical background of the discovery and the observation of unusual inverse power-law dependence for the waiting time distributions of light and dark periods. Then, we will describe our theoretical modeling efforts to elucidate the causes for the power-law behavior, to probe the roles of electron transfer in blinking, and eventually to control blinking and to achieve complete suppression of the blinking, which is an annoying feature in many applications of quantum dots as light sources and fluorescence labels for biomedical imaging
    corecore