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A nonlocal mixing-length theory of turbulence transport by finite size eddies is developed by means of
a novel evaluation of the Reynolds stress. The analysis involves the contruct of a sample path space and
a stochastic closure hypothesis. The simplifying property of exhange (strong eddies) is satisfied by an
analytical sampling rate model. A nonlinear scaling relation maps the path space onto the semi-infinite
boundary layer. The underlying near-wall behavior of fluctuating velocities perfectly agrees with recent
direct numerical simulations. The resulting integro-differential equation for the mixing of scalar densi-
ties represents fully developed boundary-layer turbulence as a nondiffusive (Kubo-Anderson or kan-
garoo) type of stochastic process. The model involves a scaling exponent & (with e— o in the diffusion
limit). For the (partly analytical) solution for the mean velocity profile, excellent agreement with the ex-

perimental data yields £ ~0.58.

PACS number(s): 47.27.Nz, 02.50.—r, 05.60. +w, 05.40.+j

I. INTRODUCTION

The logarithmic velocity profile is one of the most
famous results in the study of turbulent flows. It was first
given by Von Karman [1] and independently by Prandtl
[2]. A purely dimensional derivation is due to Millikan
[3] (and Landau [4]) and clearly shows the generality (i.e.,
model independence) of the result. Namely, the nondi-
mensionalized mean velocity U, =U /u, for Newtonian
shear flow (in the x direction) along an infinitely extended
smooth surface can only be a function of the nondimen-
sionalized distance y . =u_,y /v to that surface, where v
is the kinematic viscosity and the friction velocity u, is
defined by means of the total stress 7=pu 2 in the bound-
ary layer (p being the fluid mass density). However, in
the so-called inertial sublayer of the flow (the outer part),
stress due to molecular viscosity will be unimportant.
This is obviously possible only if dU, /dy . =1/ky,
which implicitly defines the Von Karman constant «.
Hence, for y . —  one has

U+=%UMMQ+7L (1.1)
where y arises as an integration constant. On the other
hand, in the so-called viscous sublayer (the inner part),
one has U, =y as y, —0. In the crossover region the
purely dimensional argument breaks down and one must
resort to more specific turbulence modeling (see, e.g., [5]).

Such models describe turbulence mixing of scalar den-
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sities (e.g., particles, temperature, humidity). In the
boundary layer one is particularly interested in the lateral
transport of longitudinal momentum P,=pU. Under
zero pressure gradient conditions (fully developed tur-
bulence) the Reynolds-Navier-Stokes equation for this
scalar density reads

) (1.2)

where 7y is the Reynolds stress

TR/P=—1D , (1.3)

with u =U — U (v =V — V) being the fluctuating velocity
component in the x (y) direction. Equation (1.2) is a gen-
eric transport equation—with (1.3) revealing the hierar-
chy closure problem—and will au fond be handled as
such. However, the actual solution of the transport prob-
lem in the specific case of P, =pU allows for an easy
comparison of the theory with a large body of existing
data on the mean velocity profile (e.g., for pipe and chan-
nel flow).

A unified treatment of the transport process in the
viscous and inertial sublayer (including the crossover re-
gion) should produce a value for the integration constant
v in the logarithmic profile (1.1) for which the experi-
mental data yield ¥ /k=~4-6 (along with k=0.39+0.02).
In fact, two widely used turbulence closure models do al-
low for an analytic solution of the mean velocity profile in
the entire boundary layer. As a result one obtains a y (k).

2549 ©1995 The American Physical Society
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However, both models yield manifestly incorrect values
for y/k for any value of k. For instance, the eddy-
viscosity model (which takes 7y /p=vgdU /dy for the
Reynolds stress, with vg =ku, y) gives ¥ =Ilnk. Prandtl’s
model (where vg=1%dU/dy|, with a mixing length
I=ky) is only marginally different, leading to
¥ =In(4k/e). For k=0.39 this yields ¥ /k=~—2.4 and
— 1.4, respectively.

Both the eddy-viscosity (or K closure) and Prandtl’s
hypothesis are so-called local first-order closures [5-7].
That is, these models only account for turbulence mixing
by infinitesimally small eddies. However, in contrast
with molecular diffusion, such a local description (on the
hydrodynamical scale) of turbulence transport is well
known to be inadequate [8]. In the present article it will
be argued that nonlocal effects (i.e., finite size eddies) are
crucial for a theoretical modeling of the turbulent bound-
ary layer.

Therefore, in Sec. II a nonlocal first-order closure
theory will be developed by means of an analysis of tur-
bulence sample paths and a well-defined stochastic hy-
pothesis. The ensuing model will be shown to be inti-
mately related to the general theory of continuous (but
not necessarily diffusive) Markov processes [9-11]. The
pertinent transition rates can be computed on the basis of
(experimental) sampling rates. The model involves both
an eddy viscosity and a correlation length (or mixing-
length) concept.

In Sec. III the analysis will be specialized to the semi-
infinite (i.e., constant-stress) boundary-layer situation.
Explicit results are obtained for the case of exponential
Eulerian sampling rates, which, under boundary-layer
scaling, transform into algebraic rates for Lagrangian tra-
jectories. The associated transition rates generate a
nondiffusive stochastic process of the so-called kangaroo
type (or strong-collision type [11-14]), which under-
scores the inadequacy of a gradient (diffusive or Fokker-
Planck) type of turbulence modeling. The boundary-
layer scaling function is established on the basis of a self-
consistent fluctuating velocity field analysis.

The model involves only two intrinsic parameters, viz.,
a scaling exponent € (local turbulence transport amount-
ing to e— oo ) and the viscous sublayer correlation length
a, (which is known to be a , =15 from data concerning
the normal velocity fluctuations near the wall, from both
experiment [15-19] and direct numerical simulations
[20-22]). For that matter, the perfect agreement be-
tween the latter and the present (analytical) predictions
for near-wall fluctuations is noteworthy. The exponent €
is suggested to bear significance as a fractal dimension of
a turbulence Cantor set [4,23,24].

Finally, in Sec. IV the exponent € is determined by
(partly analytically) solving the integro-differential kan-
garoo process transport equation in the steady state for
the mean velocity profile. While the Von Karman con-
stant is not an intrinsic parameter of the theory, it relates
the theoretical variables %= f(4) to the experimental
ones, as defined in Eq. (1.1), by the simple rescaling
U=kU, and g=ky . The theoretical result is in excel-
lent agreement with the experimental data for £=~0.58
(with @, =16 and k=0.39, corresponding to y /k=4.6).
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Some final remarks are made in Sec. V. An exhaustive
account will be available in Ref. [25].

II. NONLOCAL CLOSURE

A. Sample paths

Using the definition of time averaging, the Reynolds
stress (1.3) may be written as
__ 1T
TR/p—“‘7fo u(y,t +rwy,t +7)dr, (2.1)
with T sufficiently large being tacitly understood. A sam-
ple path 7(y,t) will be defined on the basis of the fluctua-
tion velocity v (y,t) through v (¢t +7)=dn(7)/dr. A typi-
cal example of both v (#) and the corresponding trajectory

n(y,7)= fo’v(y,z +5)ds 2.2)
has been sketched in Fig. 1. Thus (2.1) becomes
1
=—— N dn , 2.3
TR/P TfR(y’T)u [y,t +7(n)ldn (2.3)

(a)

ﬂujﬂ TL
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FIG. 1. Sketch of (a) a typical trace of the fluctuating veloci-
ty v (¢) at a fixed point in space and (b) the ensuing sample path
7(¢t) with its indicated visits at a particular value of the coordi-
nate 7.
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where R (y,T) is the range of values covered by 7 during
7€(0,T). Since 7(7) is a multivalued function, (2.3) will
be rewritten as

1 w Ny T)
7'R/P=_7f_°0 2

n=1

uly,t +7,(n)ldn, (2.4)

where R (y,T) is accounted for by the number of cross-
ings (or visits) of the sample path 7(y,7) with a fixed
value of the coordinate ) during 7€ (0, 7).

Now let N (n,y,T) be the number of times the sample
path visits the value % with v,>0. Similarly, let
N _(n,y,T) be the number of times the sample path visits
the value 7 with v, <O (note that N, and N_ differ at
most by one). Then (2.4) reads

N, (qpD

== [" | 3

n=1

uly,t +Tn(77'+)]

N_(ng,» 1)

- 2

n=1

u [y’t +Tn(7]|—)] d"7 ’

(2.5)

where the conditional functions T,,(nli) have been
defined as the nth 7(7) for which v >0 (upper sign) or
v <0 (lower sign).

Let us now introduce the mean visiting rates

Auly) = Na 9y, T) 2.6

as the limiting values of the right-hand side, so that upon
defining the conditional averages

1 Ny

ﬁ(y,”fl,tli)zm n§1 uly,t +7,(nlH)],
2.7
the expression (2.5) may be written as
w/p==[" A map,mt+)
—A_(y,may,m,t|—)ldn . (2.8)

Notice that (2.8) is merely a reorganized, but otherwise
exactly equivalent, version of (2.1).

B. Closure hypothesis

The expression (2.8) is convenient for the implementa-
tion of the time-reversal symmetry-breaking, stochastic
closure hypothesis. For the purpose of the present sub-
section, let the statistical properties of the turbulence be
spatially homogeneous, so that the coordinate 1 defined,
for fixed y, by the sample path (2.2) can be mapped onto
the coordinate y without further ado. The inhomogeneity
of the boundary layer will be considered in Sec. III.
_Since ¥u=U-—U in (1.3), one has i#(y,mn,t|£)=
U(y,n,t|£)—U(y,t) in (2.8). Now let the transport (of
longitudinal momentum, in this case) over Ay =7 be
effectively instantaneous (within the averaging-time win-
dow 7). Transport to y then amounts to events with
v, <0 while 7 <0 (downward) or with v, >0 while >0

(upward), which are therefore counted with
U(y,n,t|=)=U(y —n,t). On the other hand, events with
v, <0 and >0 (downward) or v, >0 and 1 <0 (upward)
represent transport from y and thus amount to
U(y,n,t|£)=U(y,t). Compactly written, one has
U(y,n,t|£)=U[y —6(%n),t]. Hence, setting

ﬁ()’aﬂ,t|+)=l—/(y—n,t) 1f17>0, 2.9)
Ty,m,tl—)=Ty —n,1) if n<0, :

and l_/'(y,n,tlir )= ﬁ(y,t) in all other cases, (2.8) becomes
w/p= " Ap,Uy +1,0-T,0ldn, .10

where A(y,7<0)=—A,(y,—7n) and A(y,n>0)=
A_(y,—mn). This result is in line with a recent Lagrang-
ian analysis of the Reynolds stress by Bernard and
Handler [8], although their more specific modeling does
not account for nondiffusive correlations.

If the visiting rates obey mirror symmetry,
A_(y,m)=A,(y,—n), so that A is odd in 7, (2.10) can be
shown to imply Fieldler’s [26] version of Stull’s [7] transi-
lient turbulence theory. If, in addition, the sampling
rates A depend only on 7, (2.10) further agrees with spec-
tral diffusivity theory [27]. In the latter case the rates
have been modeled as A(n)= f;’p (New(1)dl, where p (1) is
the probability density of occurrence of an eddy of length
I with a typical transport frequency w(/). Indeed, mixing
over a distance Ay =7 can only be due to eddies of size
1= 7. Neither transilient theory nor spectral diffusivity
has been developed under boundary-layer scaling.

C. Transport equation: Transition rates

Substituting (2.10) for 7y /p into the transport equation
(1.2) (for the time being neglecting molecular diffusion),
differentiating the first term in the integrand with respect
to y, and partially integrating it, one obtains

k14 3 = w —
S=— Ty +n,0d7 ,

Yy ay[A(y)U(y,t)]+f_w‘W(y,n) (y +m,0dn
(2.11)

Aly)= |2 A(y,m)dn, and

_ 0A,m) _ 3A(y,7m) 512
W(y,m) By oy (2.12)
Since A(y,y) is discontinuous at #7=0 with
Ay, +0)—A(y,—0)=2A(y,0), the transport kernel

W(y,n) defines a transition rate W (y,n) according to [11]

W(y,n)=W(y,n)—2A(p,0)5(7) . (2.13)

Note that A=A, at =0. The inverse of (2.12) is found
by considering it as an ordinary first-order differential
equation for the A (y,n). Setting 7=0 in the resulting
line integral yields

2A,00= [ 7 W(y —n,mdn .

Using (2.13) and (2.14), the transport equation (2.11) may
be written as

(2.14)
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2T

F) —
3 + ay[A(y)U(y,t)]

= [T (Wo)HT,0—W('I»Ty,0ldy",
(2.15)

where we have let n=y’'—y. Equation (2.15) describes
a stochastic process with transition rate W(y|y’)
=W (y,y’—y). The -corresponding transport kernel
W(yly’) obviously satisfies [ Wi(y|y')dy =0, as it
should. Of course, W(y|y') has significance as a statisti-
cal matrix only if its off-diagonal elements are non-
negative, i.e., if W(y|y’)>0. It is further worth noting
that the existence of a master equation does not rigorous-
ly imply Markovian properties on all levels of description
[11,28].

D. Exchange

Turbulent flows typically have a strong eddy structure.
As a consequence, the mixing process may involve the
property of strong exchange. For the transition rates this
implies

Wyly Y =w'ly) .

Exchange expresses a strong correlation between the mix-
ing from y to y' and back to y, for any pair of points. By
virtue of (2.12), exchange is related to a symmetry prop-
erty for (the spatial rate of change of) the visiting rates.
If, for given y, the sampling rate for the point y’ is denot-
ed by A(yly’)=|A(y,n)|, one finds

(2.16)

0 " d ,

3 Ayly”) ay,)»(y ly), 2.17)
where d/3dy (0/3dy’) now denotes differentiation for con-
stant y’ (y). For instance, assuming y’>y, increasing y,
as in A(y|y’), decreases the distance n=y’'—y and hence
typically increases the rate. On the other hand, increas-
ing y’, as in A(y’|y), one instead increases 7, leading to a
lowering of the rate. Equation (2.17) shows how these
changes for upward and downward visiting rates are re-
lated under exchange.

If A only depends on 1 and if A(7) is continuous at
n=0, (2.17) implies that A(n)=A(—mx). In fact, this
property is implicit in the derivation of the spectral
diffusivity equation [27] for homogeneous turbulence. In
that case the explicit flow term in the transport equation
(2.11) and (2.15) vanishes because A(y)=0 by symmetry.
This latter feature is a more general consequence of ex-
change. Namely, by means of (2.17) one readily shows
that dA/dy =0 if A(tow|y)=0. Hence A(y)=0 if
A(£ o )=0. These conditions are typically satisfied in a
well-posed physical problem. The boundary-layer model
of Sec. III provides a particular instance. Of course, in
that case y, ' €(0, o ).

III. BOUNDARY LAYER
A. Scaling

While the linear mapping in Sec. II of the sample path
coordinate 7 (constructed for fixed y) onto the coordinate
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y may be correct for homogeneous turbulence, it is cer-
tainly not valid in the boundary layer (where the size of a
typical eddy scales with the distance y from the surface).
The basic scaling hypothesis for fully developed
boundary-layer turbulence asserts the existence of an in-
variant characteristic time scale 7, (defined at some y,)
such that dt /dTo=y /y, scales with y. Since the flow in
the viscous sublayer (y —0) is also fully turbulent
(despite the fact that it is sometimes misleadingly denoted
as the laminar sublayer) [17], this linear time scaling
Z(y)=y is expected to hold down to molecular distances
from the surface. In addition, the velocity fluctuations
themselves may depend on y. The velocity scaling func-
tion (y)~ (v2)!/? will be discussed in more detail in Sec.
IIIC. In the inertial sublayer (y — o) one has «(y)=1.
Finally, the eddy scaling function is given by 4(y)=c&7.

Let n(y,t) be the sample path attached to the point y
and let v(y,?) be the fluctuating velocity at y (as in Sec.
II), so that dnp=v (y,t)dt. Now let 1,(y,¢) denote the ac-
tual trajectory of a fluid particle with fluctuation velocity
v(y,,t), wherey, =y +n,. Thatis, dn,=v(y +7,,t)dt.
The corresponding trajectory is given by

N.,1)= fo’v[y +n, (), 7ldT . 3.1)

Boundary-layer scaling then implies that dnp=s(y)dp,,
where @u(7y) is a nondimensional invariant function.
Similarly, dn, =4(y, )d@,. Hence the Jacobian J(n,7n,)
=|dn/dn,| of the mapping 7(7, ) reads

__ sl)
J(n,7,) PITEE (3.2)
so that
U g 33
3(y) fO sy +15) T G-3)

With s(y)=0 and 4(0)=0, (3.3) maps the fictitious path
space NE(—o,) onto the actual path space
7. E(—y, ©), as it should be for the boundary layer. For
example under pure time scaling (¢+=1) one has s(y)=y
and (3.3) explicitly yields the inverse mapping
7, =y(e"’—1).

B. Sampling rates: Analytical model

Using (3.2) one may rewrite (2.9) in terms of 7,. The
closure hypothesis of Sec. II now implies the linear map-
ping of 7, onto y. Letting n,=y’—y and defining
A, yly)=J(n,7m,)A(y,n), the Reynolds stress formula
(2.10) thus becomes

=/p= [ " AT 0dy"

where, in view of the visiting rates model to be presented
in Eq. (3.5), we have already accounted for exchange.
Since by (2.7) the visiting rates are defined in terms of
velocity fluctuations at a fixed point y, one expects
Ai(y,—m)=A_(y,m). Moreover, due to scaling one
should have A=A[y, || /4(y)]. Therefore, let us consider

D
Aly,m)=
»>m) 3(y)

(3.4)

e—e]nl/é(y) , (3.5)
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as suggested by (3.3) in the inertial sublayer. The param-
eters D and € will be determined further on. Using (3.2)
and (3.3), one obtains

te
n—_D _3 | £Yp)
A ply") e 3 | 40" , (3.6)
with
_ y_dy’
#p)=koexp | [ 20 3.7

the upper (lower) sign in the exponent applying if y’'>y
(y'<y) and 4, and y, being constants [of integration of
04 /0y =4/4(y)] that are immaterial for the rates. For
example, let £,=4£(y,) be such that £(y)/y —>1ify— 0.

The rates (3.6) satisfy exchange according to (2.17).
Hence the transport equation (2.15), i.e., (1.2), now be-
comes

3T e o
-§=f0 (W, ply)Uy',1)

’T

WUy v, (38
y
with W, (y|y')=0A,(yly’)/dy. Equation (3.6) yields
te
eD A(y)
= , 3.9
WL OO= 20500 | %0n (3.9)

which is always non-negative and therefore indeed gen-
erates a proper stochastic process (see Sec. IIC). Note
that (3.9) factorizes as W, (y|y’)=4(y)g(y’). Such a sto-
chastic process is known as a ‘kangaroo process” (see,
e.g., [11,14]).

A kangaroo process [in particular, with 4(y)=1 or
#(y)=1] is also known as a Kubo-Anderson process. It
has inter alia been used to describe motional narrowing in
spin systems [11-13,29]. An application to Mdssbauer
spectroscopy is due to Blume and co-workers [30-32]. In
atomic collision theory [33-35] and in laser line-width
calculations [14,36,37] it has been applied in the strong-
collision limit. This limit is the extreme opposite of
diffusive motion (as described by local gradient models,
i.e., Fokker-Planck-type equations). In fact, since
boundary-layer scaling amounts to both s(y)—y and
4(y)—y if y— o0, a gradient expansion in (3.8) and (3.9)
is not rigorously possible for any finite value of € < o (see
also Ref. [8]).

C. Scaling function

The scaling function is given by us(y)=7 with
Z(y)=y. Since s(y)=y for y — o implies the logarithmic
velocity profile (1.1), one should have «(y)=1 in the iner-
tial sublayer. Indeed, there exists ample experimental
evidence that the root mean square of the normal velocity
fluctuations (v2)!”2~,(y) does not depend on y in that
region [15-17,38,39]. Of course, «(y)=1 cannot hold
down to the surface. On an as yet undetermined length
scale (a) near the surface (y =0), the normal velocity

2553

goes to zero as «(y)=(y /a)? by virtue of continuity (see,
e.g., [4,15-22] and Appendix B).

The alternative case [17] #(y)~y? if y >0 (i.e., a=0)
would imply mixing length scaling s(y)~yp* in the
viscous sublayer. However, in Appendices B and C it is
shown, by means of a systematic analysis of the fully
three-dimensional Navier-Stokes equation for the fluc-
tuating velocity fields, that s(y)~y” (with n > 1) implies
Tr/p~y" (if y—0) for the Reynolds stress and that in
the power series expansion of the Reynolds stress the
term with n =4 is always absent. Hence «(y)~y? if
y—0.

Consider the inverse scaling function s " '=1/4(y) as a
function of y ~!. It has the properties s~ !—p ! if
y !>0and s !>y "if y ! . Since it should be a
continuous and differentiable function on y “'€(0, » ), it
may in general have the polynomial representation
s '=37_,c,y "% In particular, one has n =3 while
¢;=1 and c;=a? The inverse velocity scaling function
¢ 1=1/0(y) therefore reads & '=1+c,y "'+(y/a) "2
Consequently, one has «(y)=(y /a)}[1+c,y /a*+ - - - ]if
y—0. However, in Appendix B it is shown that in the
Taylor expansion of «(y) the cubic term ~y3 is always
absent. Therefore, ¢, =0 so that

(y/a)?
1+(y/a)? ~

A comparison of (v2)!"?~u, +(y) with the available data
from experiments as well as from numerical simulations
[15-22] confirms that c,~0 and yields a, =~10-20
(where a  =u$ /v), with an average a, ~15. Finally,
(3.10) implies

e(y)= (3.10)

2
1

1
3(y) y

1+ (3.11)

a
y
for the inverse mixing-length scaling function.

IV. VELOCITY PROFILE

A. Steady state

Let us now consider (3.8) and (3.9), for the scalar
momentum density pU, in the steady state U /9t =0. In
that case it is more convenient to return to (1.2) and to
invoke (3.4) for 7y /p, which yields

LT
dy

Substituting (3.6) for the rates and doing a partial integra-
tion, one obtains

+ [ TAOOT Yy =il 4.1)

— € —
3T . D | r=| A | 0T ,,
__+_ 7
Vay € [fy Ay') | oy’
—€ —
y é(y) aU b —=,,2
LW 9 gy l=u2 . 42
+f0 201 ay'd ul (4.2)

By (3.7) and (3.11) one has
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2
a

y

) 4.3)

A(y)=y exp

The Fredholm integral equation (4.2) can be mapped

onto an equivalent differential equation. First let
z=In[4(y)/ 4], so that
U D pe .00 ,,_ ,
V"(,;-F—E—fuwe elz—z EZ—'dz =uy , (4.4)

with 3/0z=u4(y)3/3dy. Note that if z— » (i.e., y— )
one has 8(7/az—>u, /k according to (1.1), so that
D =%82Ku*. Considering now J=ffwdz’K(z —z')
with K (z)=e "%l as a linear operator [40], which maps
the function @=3U/dz onto another function, say,
¥=Jd'p, one obtains &' =1eg[1—e~%(d/dz)?] for the in-
verse operation (i.e., & !#=I). Therefore, operating
with #~! from the left on (4.4) reduces it to an inhomo-
geneous second-order differential equation for the veloci-
ty gradient. In terms of g=ky, (where y =u,y/v)
and U=kU, (where U, =U/u,) it becomes a Sturm-
Liouville equation for £ (4)= U, viz.,

—e () s() ] F1+s(0) 1L (g)=1,

where a prime denotes differentiation with respect to &,
where 4(g)=4’/(a’+4%) with &z=ka, (and
a,=u,a/v) so that a=6. The ensuing mean velocity
profile U(y) is universal in the sense that it is indepen-
dent of the Von Karman constant «.

(4.5)

B. Profile crossover: Scaling exponent

The exponent € may be computed in two ways. First,
on the “input side” it can be determined by processing
fluctuating normal velocity data as described in Sec. II A
and comparing the resulting sampling rates A(y,7n) with
(3.5). Second, on the “output side” it can be found by
comparing the measured mean velocity distribution over
a smooth surface with the solution of (4.5). The present
estimate of € will be obtained using the output method.

Since (4.5) allows for an exact solution in two limiting
cases, a rough estimate for € can be made analytically.
First, for €— o, (4.5) reduces to its local limit
Z(g)=1/(1+3). In particular, for the logarithmic
profile (1.1) it leads to ¥y =7y, +1nk, ¥, given in (A2) and
(A3). This yields y=1.5 for «a=~6. Second, for a —0,
(4.5) reduces to its pure time-scaling limit where
2(%)=g, which allows for a solution in terms of Lommel
functions. The resulting logarithmic profile constant is
Y=v.+lnk, y, given in (A10). With y=y,+vy,.+Ink,
the experimental value ¥ =2 implies y.~0.5. This corre-
sponds to €=~0.5.

A more accurate value for € can be obtained by a best
fit to the entire measured profile, i.e., including the cross-
over region between viscous and inertial sublayers. For
that purpose, Eq. (4.5) has been integrated by means of a
simple (matrix inversion) routine, starting at =0 (the
surface) with /(0)=1. A final integration then yields the
universal profile (g ). An excellent fit to the experimen-
tal data U, =%U/k as a function of y, =g/k for
1<y, <10* [taken from standard references for both
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FIG. 2. Plot of the best unconditional least-squares fit of the
theoretical profile to the experimental data, corresponding to
k=0.39,a, =16, and €=0.58.

pipe and channel flow (e.g., [41]) and processed for their
residual Reynolds number dependence as Re— «; see
Ref. [25]] is shown in Fig. 2. It corresponds to k=0.39
and a , =16 and yields the value e =0.58.

These optimal values are obtained by means of a least-
squares computation [42] without a priori constraints on
the triple (k,a,,€). Assuming a constant relative data
error over the entire y , range, the theoretical curve fits
the data with an accuracy of 2%. Statistical tests on the
optimum triple have been performed as well. The scatter
plots show that the 95% confidence intervals amount to
0.375k50.41, 14Sa, 518, and 0.45e50.8. A de-
tailed discussion can be found in [25].

V. FINAL REMARKS

In this article we have shown that mixing of scalar
quantities in the turbulent boundary layer can be de-
scribed as a kangaroo process. This extremely non-
diffusive stochastic process is found by means of (i) the
construct of a local sample path space 7(y) at each point
y in the fluid, (ii) a nonlinear scaling 4(y) that maps 7
onto a global path space 1,(n) with », =y’ —y, (iii) a sto-
chastic, time-reversal symmetry-breaking, closure hy-
pothesis, and (iv) an analytical sampling rate model satis-
fying exchange.

The closure hypothesis (2.9) implicitly assumes the
transported quantity to be a tracer, which is trivially true
for the properties of the fluid itself (for instance, for the
Reynolds stress). The hypothesis can also be shown [25]
to be rigorously correct for a Rayleigh particle in the
Smoluchovski limit (i.e., for diffusion). The sampling rate
model (3.5) is suggested by the nature of the mapping
(3.3) of Eulerian onto Lagrangian sample paths in the
inertial sublayer [i.e., where s(y)=y]. The general ex-
pression (3.11) for the scaling function in the semi-infinite
boundary layer arises from an analysis (in Appendix B) of
fully developed three-dimensional turbulence over an
infinite flat plate and an assumption concerning its sim-
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plest analytical form.

The sampling rates A,(y|y’), which are defined in
terms of the Auctuating velocity field at fixed y, define
transition probability rates W,(yly’) in a Chapman-
Kolmogorov (master) type of equation that describes the
migration of a mean scalar density P(y,t). In particular,
in that manner the Navier-Stokes equation leads to an
integro-differential equation for the longitudinal momen-
tum P, =pU, i.e., for the mean velocity U(y,t) at a dis-
tance y from a flat surface. The theory involves both an
eddy viscosity (defining the Von Karman constant
k=~0.39) and an exponent €. The latter defines a
Prandtl-type mixing length (I ~y /e if e— 0, [ =ye!/® if
e¢—0). In the, analytically, highly nonuniform limit
g— oo the model reduces to local (diffusive) K theory.
While in the inertial sublayer (y — c ) turbulence mixing
is self-similar by perfect time scaling 4(y)~y, it involves
a characteristic length (a_, =16) to yield viscous sublayer
scaling s(y)~y3.

In the steady state the integral equation (3.8) is easily
solved (analytically for a, =0 and numerically for
a . 70) since it can be transformed into the differential
equation (4.5). The theoretical result has been compared
with experimental data for the mean velocity profile in
Fig. 2. This yields £=0.58, thereby showing the nonlo-
cality of turbulent transport. As a consequence, the tur-
bulence kangaroo process (3.8) and (3.9) has fractal
features. Namely, let 72(Y >y) denote the probability
that (during a short period of time 7) the system, e.g., a
tracer particle, jumps from y, to beyond y >y . In terms
of the sampling rates: P(Y >y)=—7A,(yoly). Hence,
using (3.6) and (3.7) one has P(Y >y )=Cyy ~* (for all y in
the inertial sublayer) with Co=7D 45/, which, with
€=d, may be compared with the number of gaps
ML >1)=N,yl 9 of length L >1in a Cantor set €, with
fractal dimension 0 <d < 1.

While the uncertainty in € is as yet rather large, it is al-
most surely (for more than 95%) less than unity. It is
gratifying that the value £=0.58 has been determined
within the triple (x,a ,,€) with k=0.39, which confirms
its by-now accepted value, and a , =16. This result for
a agrees with its value estimated on the basis of both
the root mean square «(y) of the normal velocity fluctua-
tions, according to (3.10), and their longitudinal correla-
tion function R,,(x). The latter involves a correlation
length X, =xka? /2, for which the experimental data
indeed indicate X, =45-50, which is discussed in more
detail in Appendix C. An exhaustive account of the
present work will be available in Ref. [25].

APPENDIX A: THE LOGARITHMIC
PROFILE CONSTANT

1. The case e=

By (4.5) strict locality amounts to U'(g)=1/[1+
2(g)], which is readily integrated to yield the velocity
profile
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. 1 2
= + £ “N.Inl1—%& + 4
‘Zl N, 0 In |1 4 + 2 N 1 in A C
+ —I—N , |arctan |— | —arctan 1—2¢4/B ,
A A
(A1)
where A is the real root of the cubic equation

A3— A%2—42*=0 (which has a positive discriminant),
B=A4A—1, C=42?/A [AB=C so that B=(a/A)*],
No=A2/(1+3B), Ny=1—N,, N,=1—(1—3B)N,/ 4,
and A=(3+4/B)'/% If 4— o, (A1) yields the logarith-
mic profile (1.1) as % —In(g)+y,, with

Yo=—NyIn( A)—-é—Nl ln(C)+%N2arccot

(A2)
If @ >>1, (A2) leads to

Yo~ (27/33 )2 — In(2?*3)— 1, (A3)

where terms of order «~2/’Inz have been disregarded.
For example, y,=2.5 if 2 =6.

2. The casea =0

For pure time scaling s(#)=g. Rewriting (4.5) in
terms of £=2¢e4'/? it becomes the Lommel equation [43]

E2D"+ED' —(E2+02)P=k (A4)

for ®=3U/dy. A prime denotes 3/3, o=2¢, and

=—(2eu,)*/v. Hence [43] ®=ks_, (i&)+BI (&),
with B =(km/2¢)csc(emr). This is conveniently written
as

d=—k

b

Ka(g>f0510(§')i§§+10<§>f§°°Ka(g')%,§

(AS)

where I, (£) and K_(£) are modified Bessel functions.
Once more using (A4), the logarithmic part of the veloci-
ty profile U becomes

21n<§/a)+(ssz/k)f°"<1>(§')i§,é

where terms that vanish if £— o have been omitted.
Equation (A6) leads to U —In(4)+y, with

U= lin}) , (A6)

y€={}i£})[1n(2e/a)2—852,4] , (A7)
A=Ay+A4,,and

A0=2fa°°Ka(§)i§§f0§Ia(§’)£§§,'— ,

A1=—fawxa(§)i§5fo“10<g'>%$ . e

Consider A4,. Using the series expansion for I (£’),
the integrations can be done for a =0, except in the lead-
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ing term (n =0). After using form. 6.561.16 from [44],
the sum over n =1,2, . .. can be related to a combination
of two Euler ¢ functions (form. 6.3.16 from [45]). The
remaining integral (n =0) over £ can be done using the
Fourier cosine integral representation (form. 9.6.25 from
[45]) of £°K ,(&). In the ensuing double integral the or-
der of integrations may be interchanged and, using
Int =9t# /3u at u=0 to introduce a partial derivative of a
beta function, one obtains

2
[¢E

omitting terms that vanish if a —0.

For A, one only needs I,(§) and K (&) for £—0. One
obtains 4,=—o 3/2. Substitution of the resulting
A= A,+ A, into (A7) yields

l+%a

1 — 1 e

o= 20

; (A9)

‘)/8=%:-—2[1/JE(1+8)-—1ns] . (A10)
If e— 0, one finds y,~B,/e’—0. B,=1 being a Ber-
noulli number. For example, y,~0.5 if e=0.5. If e—0,
v, tends to infinity as 1/¢.

APPENDIX B: TIME-SCALING ANALYSIS
OF VISCOUS SUBLAYER FLUCTUATIONS

Fully developed boundary-layer turbulence is defined
by all mean quantities being stationary and translation in-
variant in the (x,z) plane parallel to the surface (y =0).
For convenience, let U=U, (i.e., U,=U,;=0). For the
mean values the Navier-Stokes equation then yields
(1.2), with 3U /8t =0, and P= —p(v?) subject to the
(often overlooked) constraint

vw =0 . (B1)

To discuss the eddy-scaling function s(y)=et it is re-
quired to study the actual velocity fluctuations near the
wall under time scaling Z(y)=y. For (u,v,w), where
u = U — U, etc., one obtains [6,15-17,38,46]

%+U§£+ﬁ%=—%§§+vAu—u—g%—vg—;
St
% —gi l—gf-FvAv—ug—;—vg—;
%4»% z, (B2)
dw _@-=—l—a£+vA LR L L

a  Tax poz YT Y Yz

where A is the three-dimensional Cartesian Laplacian.
The pressure fluctuations follow from

1 v 3T %uv uw %vw
SAp=—229%Y - —~
P P dx dy dx dy 2axaz dyadz
82 2 82 2 X 82
- ax‘,_( )—Kyj(v *UZ)—gz‘z—(wz). (B3)
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The scaling hypothesis is introduced by letting both
t—ot and y—oy. In addition, let © =0«, v =0c,
w =0, and U=0%U, expand all fields in powers of o
(e.g., ="+ 0aV+02%'P+ - -+ ) and collect terms of
equal power in o (o =1 in the end). The continuity equa-
tion (divee=0) at once implies '®’=0, while the leading
contributions from (B2) yield 8%?/9y2=3," /3y
=03%0' /34*=0 so that

£V=y/(x,2,t) ,

£ O=¢(x,2,1) , (B4)

W(O):y,?(x,zyt) )

where /, ¢, and £ are as yet arbitrary, random functions.
From (B3) one finds 3249 /3y2=0, which is already
satisfied by (B4). The next order from (B3) yields
3%V /3y?=0, so that

/z‘”——‘yt,b(x,z,t) ,

with ¢ being another arbitrary function. Using (BS), the
terms of order o from (B2) give expressions for «'!), &V,
and «'! in terms of ¢, ¥, /£, and ¢. In particular,

#V=(1/2lu)y*p (where u=pv). Continuity then implies

1 QZ:()
ax+u¢+ oz '

(BS)

(B6)

Hence, in addition to the pressure fields ¢ and ¥, only /
or ¢ can be an independent source function. Consider
then the constraint (B1), which in leading order (c3) re-
quires that ¥g=0. This fixes the independent triple
(¢? 1/}’? )

By virtue of (B6), continuity is satisfied through all
higher orders in o [25]. Further, the constraint (B1) is
satisfied at least through order o> due to (i) the mutual in-
dependence of (4,1, ) and (ii) statistical homogeneity (in
x,z, and t).

Let us finally collect the result for the normal velo-
city fluctuations v =v,y +(1/2D0,p2+(1/30v3p3+ - - -
[17-21]. One finds

1 _ 1|9  d
v, =0, v2=;¢, v3——-; 5;%—4'5% ,
(B7)
_ 13y 2|3 %y
Ve o 2T |
uv ot  p | ox oz

which implies that v,v;=0. Hence (v2)=1y*#,,(0)
+0 (%), where F,,(x)=0,(x)v,(0), so that in the ex-
pansion of the root mean square (v2)!/? the term of order
y? is always absent (the case =0 is ruled out in Appen-
dix C). This feature is used to arrive at (3.10) for «(y),
which, with Z(y)=y, yields (3.11) for s(y).

APPENDIX C: REYNOLDS STRESS
NEAR THE SURFACE

Consider T /p= —uv near the wall. From Appendix B
one finds u =u,y +(1/2Du,y?+(1/3Du,y3+ - - - with
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_, 13
ul /’ u2 u ax’
(C1)
_13/ 18y (¥4 ¥/
Uy =— +— — + .
v ot u ox dx? 9z?
Hence, using (C1) and (B7) one obtains
TR/p=—Huw )y +(Fu vt Suz )y, (C2)

where terms of order y* are always absent because
u3=u,v,=0. Also u,v;=0. Integrating (B6) over
x'E€(— «,x) and using =0, (C2) yields

=/p=*/2) [ “Hn(x)dx+0(*) , (C3)
H,,(x) being defined below (B7). The absence of a term
of order y* in the Reynolds stress is worth noticing in
view of a longstanding controversy [17,25]. For example,
Hinze [16] does not decide between n =3 and 4 in
Tr/p~y". Reichardt [47] advocated n =3, but noted
that this would not apply if certain correlations were ab-
sent, viz., if /¥=0. Since according to Appendix B
(£,¥) is not a pair of independent random functions, let
us consider the case ¥=0. By (B7) one then has
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v, =v,=0, so that in (C2) terms ~y> as well as ~y°
would vanish. But still v;540. Hence one would have
o(y)~y? and Tr/p~y®. These functions, however, are
shown to be mutually incompatible in the following mod-
el calculation.

Let o(g)=Ag1+0(y)] so that s(g)=AgL*[1
+0(g)] with k=>2. Substitution in (4.5) and letting
Alg)=1+cigteg’+ -+ readily yields L(g)=1
—Ag**[1+0(y)].  Noticing that 75/pul =1
—/(g), one thus obtains 7g/pul=AgL"[1+0 ()]
with n =k +1. Clearly, the case ¥=0 (i.e., Kk =3 and
n =6) is incompatible with this fluctuation-dissipation re-
lation. Hence k =2 and n =3. This behavior is perfectly
confirmed in a recent comparison [48] of both experimen-
tal data [17-19] and results from direct numerical simu-
lations [20-22].

The analysis with k =2 (n =3) assumes the length
scale @ =ka , to be nonzero. With A =1/4? [see below
(4.5)] and g=ky, recalling ?~L(y*/u2)#,,(0) from
Appendix B, one obtains #,,(0)=4u2 /a*. Finally, us-
ing 7g/p=~uly’/a’ along with (C3) and defining
R, (x)=H,,(x) /F,(0), one finds a ; =(2% , /k)'/? with
X,= fg"Rzz(x)der. See, e.g., [38] and Sec. V.
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