20,169 research outputs found

    Correlation effects and orbital magnetism of Co clusters

    Get PDF
    Recent experiments on isolated Co clusters have shown huge orbital magnetic moments in comparison with their bulk and surface counterparts. These clusters hence provide the unique possibility to study the evolution of the orbital magnetic moment with respect to the cluster size and how competing interactions contribute to the quenching of orbital magnetism. We investigate here different theoretical methods to calculate the spin and orbital moments of Co clusters, and assess the performances of the methods in comparison with experiments. It is shown that density functional theory in conventional local density or generalized gradient approximations, or even with a hybrid functional, severely underestimates the orbital moment. As natural extensions/corrections we considered the orbital polarization correction, the LDA+U approximation as well as the LDA+DMFT method. Our theory shows that of the considered methods, only the LDA+DMFT method provides orbital moments in agreement with experiment, thus emphasizing the importance of dynamic correlations effects for determining fundamental magnetic properties of magnets in the nano-size regime

    Study of Beam Losses at Injection in the CERN Proton Synchrotron

    Get PDF
    The maximum intensity the CERN PS has to deliver is continuously increasing. In particular, during the next years, one of the most intense beams ever produced in the PS, with up to 3000 1010 proton per pulse, should be delivered on a regular basis for the CNGS physics program. It is now known that the existing radiation shielding of the PS in some places is too weak and constitutes a major limitation due to large beam losses in specific locations of the machine. This is the case for the injection region: losses appear on the injection septum when the beam is injected in the ring and during the first turn, due to an optical mismatch between the injection line and the PS. This paper presents the experimental studies and the simulations which have been made to understand the loss pattern in the injection region. Possible solutions to reduce the beam losses will be described, including the computation of a new injection optics

    Statistical mechanics in the context of special relativity

    Full text link
    In the present effort we show that Sκ=kBd3p(n1+κn1κ)/(2κ)S_{\kappa}=-k_B \int d^3p (n^{1+\kappa}-n^{1-\kappa})/(2\kappa) is the unique existing entropy obtained by a continuous deformation of the Shannon-Boltzmann entropy S0=kBd3pnlnnS_0=-k_B \int d^3p n \ln n and preserving unaltered its fundamental properties of concavity, additivity and extensivity. Subsequently, we explain the origin of the deformation mechanism introduced by κ\kappa and show that this deformation emerges naturally within the Einstein special relativity. Furthermore, we extend the theory in order to treat statistical systems in a time dependent and relativistic context. Then, we show that it is possible to determine in a self consistent scheme within the special relativity the values of the free parameter κ\kappa which results to depend on the light speed cc and reduces to zero as cc \to \infty recovering in this way the ordinary statistical mechanics and thermodynamics. The novel statistical mechanics constructed starting from the above entropy, preserves unaltered the mathematical and epistemological structure of the ordinary statistical mechanics and is suitable to describe a very large class of experimentally observed phenomena in low and high energy physics and in natural, economic and social sciences. Finally, in order to test the correctness and predictability of the theory, as working example we consider the cosmic rays spectrum, which spans 13 decades in energy and 33 decades in flux, finding a high quality agreement between our predictions and observed data. PACS number(s): 05.20.-y, 51.10.+y, 03.30.+p, 02.20.-aComment: 17 pages (two columns), 5 figures, RevTeX4, minor typing correction

    Ultrafast Molecular Imaging by Laser Induced Electron Diffraction

    Get PDF
    We address the feasibility of imaging geometric and orbital structure of a polyatomic molecule on an attosecond time-scale using the laser induced electron diffraction (LIED) technique. We present numerical results for the highest molecular orbitals of the CO2 molecule excited by a near infrared few-cycle laser pulse. The molecular geometry (bond-lengths) is determined within 3% of accuracy from a diffraction pattern which also reflects the nodal properties of the initial molecular orbital. Robustness of the structure determination is discussed with respect to vibrational and rotational motions with a complete interpretation of the laser-induced mechanisms

    PHYLOGENETICS OF ELONGATION FACTOR-G MITOCHONDRIAL PROTEIN GENE (GFM1) IN TEN SELECTED SPECIES

    Get PDF
    The second stage of protein synthesis is elongation. One of the elongation factors in the elongation cycle of protein synthesis is the elongation factor-G (GFM1). GFM1 is an ancient translational GTPase (trGTPase); the bacterial homolog of eukaryotic eEF2 and archaeal aEF2, respectively. It may interact with the transcriptional apparatus as a positive regulator of RNA synthesis in various species. Genetic variations in GFM1 gene of ten species including cattle, human, chicken, mouse, rat, horse, zebra fish, honeybee, pig and rabbit based on availability were investigated using bioinformatic approach. Using a comparative genomic approach, 4,442 base pairs (bp) of the GFM1 sequences were obtained. Alignment of the sequences within the region of 3,626 bp and containing 816 gaps was carried out using Clustal W software. A very close relationship between rabbit and pig was observed in the phylogenetic tree of GFM1 gene which showed that the comparability of GFM1 gene sequence was highest between the two species and they evolved from a most recent common ancestor with respect to GFM1 gene. Cattle, human, rat and zebra fish were closest by their genetic distances to the ancestor, while mouse, horse, chicken, rabbit and honeybee were distant from the common ancestor. However, close phylogenetic relationship among species might be as a result of conservation of the sequence in the various species.Â

    Effects of light colour and oscillator frequency on earthworm bioactivity

    Get PDF
    An experiment was conducted at the Zoology Laboratory of the Olabisi Onabanjo University, Nigeria to evaluate the suitability of different light colours. Being generated from 15-watt, low-heat, or frequencygenerated flourescent tubes as stimulants to enhance, major cast productivity of the earthworm species Hyperiodrilus africanus. The aim was to determine if exposure to the different light colours would improve the cast productivity of the worms and show whether H. africanus would show preference for any particular light colour, in terms of mass of cast produced and rates of emigration. The earthworms were kept in cylindrical plastic containers and put in different cubicles on a wooden shelf, where they are subjected to different light colours that is, white, dark (control), green, blue, and red. Results indicated that the red light colour was the most suitable in terms of cast productivity, as casting was highest (11.96 g/worm), followed by blue (10.66 g/worm), green (9.49 g/worm), dark (7.2 g/worm) and white (4.86 g/worm), respectively. Least emigration was recorded under the control (dark) , followed by red, white, blue and green respectively, which indicated that the worms were probably more ‘comfortable’ in the dark and the red light than the other light colours tested. Results suggest that if red light is introduced to a farm, casting activities can be increased and therefore, soil fertility can be improved

    The calibration of photographic and spectroscopic films: Reciprocity failure and thermal responses of IIaO film at liquid nitrogen temperatures

    Get PDF
    Reciprocity failure was examined for IIaO spectroscopic film. The results indicate reciprocity failure occurs at three distinct minimum points in time; 15 min, 30 min and 90 min. The results are unique because theory suggests only one minimum reciprocity failure point should occur. When incubating 70mm IIaO film for 15 and 30 min at temperatures of 30, 40, 50, and 60 C and then placing in a liquid nitrogen bath at a temperature of -190 C the film demonstrated an increase of the optical density when developed at a warm-up time of 30 min. Longer warm-up periods of 1, 2 and 3 hrs yield a decrease in optical density of the darker wedge patterns; whereas, shorter warm-up times yield an overall increase in the optical densities

    The SILCC (SImulating the LifeCycle of molecular Clouds) project: I. Chemical evolution of the supernova-driven ISM

    Full text link
    The SILCC project (SImulating the Life-Cycle of molecular Clouds) aims at a more self-consistent understanding of the interstellar medium (ISM) on small scales and its link to galaxy evolution. We simulate the evolution of the multi-phase ISM in a 500 pc x 500 pc x 10 kpc region of a galactic disc, with a gas surface density of ΣGAS=10  M/pc2\Sigma_{_{\rm GAS}} = 10 \;{\rm M}_\odot/{\rm pc}^2. The Flash 4.1 simulations include an external potential, self-gravity, magnetic fields, heating and radiative cooling, time-dependent chemistry of H2_2 and CO considering (self-) shielding, and supernova (SN) feedback. We explore SN explosions at different (fixed) rates in high-density regions (peak), in random locations (random), in a combination of both (mixed), or clustered in space and time (clustered). Only random or clustered models with self-gravity (which evolve similarly) are in agreement with observations. Molecular hydrogen forms in dense filaments and clumps and contributes 20% - 40% to the total mass, whereas most of the mass (55% - 75%) is in atomic hydrogen. The ionised gas contributes <10%. For high SN rates (0.5 dex above Kennicutt-Schmidt) as well as for peak and mixed driving the formation of H2_2 is strongly suppressed. Also without self-gravity the H2_2 fraction is significantly lower (\sim 5%). Most of the volume is filled with hot gas (\sim90% within ±\pm2 kpc). Only for random or clustered driving, a vertically expanding warm component of atomic hydrogen indicates a fountain flow. Magnetic fields have little impact on the final disc structure. However, they affect dense gas (n10  cm3n\gtrsim 10\;{\rm cm}^{-3}) and delay H2_2 formation. We highlight that individual chemical species, in particular atomic hydrogen, populate different ISM phases and cannot be accurately accounted for by simple temperature-/density-based phase cut-offs.Comment: 30 pages, 23 figures, submitted to MNRAS. Comments welcome! For movies of the simulations and download of selected Flash data see the SILCC website: http://www.astro.uni-koeln.de/silc
    corecore