69 research outputs found

    DYNAMIC MODELING AND SIMULATION OF SHIRORO HYDROPOWER PLANT IN NIGERIA USING MATLAB/SIMULINK

    Get PDF
    Hydroelectricity is an important component of world renewable energy supply and hydropower remains a major source of electricity generation due to its environmental friendly nature. This paper aimed at modeling and simulating hydropower plant with a view of increasing the efficiency and stability of the generating station. The hydropower plant model was developed using Matlab/Simulink software. The designed model comprises: Hydraulic turbine (PID governor, servomotor and turbine), Synchronous generator and an excitation system. The dynamic response of the system to the disturbances on the system network was studied. A three phase fault was introduced in the SHPP model at 0.1 sec and cleared at 0.2 sec. The simulated result shows that the generated voltage quickly regained its stability on the removal of the fault, the stator currents went into transient after the fault was cleared and become stable at 0.4 sec. The excitation voltage also regains its stability but it was slower and the speed of the rotor was out of stable after the occurrence of the disturbance on the system. The simulated result shows an improvement in the static and dynamic behavior of SHPP and an increase in the generating performance of the generating station

    Chemical Composition and Quality Characteristics of Wheat Bread Supplemented with Leafy Vegetable Powders

    Get PDF
    The study investigated the effect of supplementation of the leaf powders of Telfairia occidentalis, Amaranthus viridis, and Solanum macrocarpon on the chemical composition and the quality characteristics of wheat bread. The bread samples were supplemented with each of the vegetable leaf powders at 1%, 2%, and 3% during preparation. The bread samples were assayed for proximate composition, mineral composition, physical, sensory, and antioxidant properties using standard methods. The addition of vegetable powders significantly increased the protein (9.50 to 13.93%), fibre (1.81 to 4.00%), ash (1.05 to 2.38%), and fat (1.27 to 2.00%). Supplementation with vegetable powder however significantly decreased (p<0.05) the carbohydrate and moisture contents. Significant (p<0.05) increases were recorded for all evaluated minerals as the level of vegetable powder increased. Supplementation with vegetable powder caused significant decrease in total phenolic content, percentage DPPH inhibition, metal chelating ability, ferric reducing antioxidant power, and total antioxidant capacity. Sensory results showed that there was significant decrease in sensory qualities with increasing supplementation. This therefore suggests that bread supplemented with vegetable powder could have more market penetration if awareness is highly created

    Clients' reasons for prenatal ultrasonography in Ibadan, South West of Nigeria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prenatal ultrasonography has remained a universal tool but little is known especially from developing countries on clients' reasons for desiring it. Then aim was to determine the reasons why pregnant women will desire a prenatal ultrasound.</p> <p>Methods</p> <p>It was a cross-sectional survey of consecutive 222 women at 2 different ultrasonography facilities in Ibadan, South-west Nigeria.</p> <p>Results</p> <p>The mean age of the respondents was 30.1 ± 4.5 years. The commonest reason for requesting for prenatal ultrasound scans was to check for fetal viability in 144 women (64.7%) of the respondents, followed by fetal gender determination in 50 women (22.6%. Other reasons were to check for number of fetuses, fetal age and placental location. Factors such as younger age, artisans profession and low level of education significantly influenced the decision to check for fetal viability on bivariate analysis but all were not significant on multivariate analysis. Concerning fetal gender determination, older age, Christianity, occupation and gravidity were significant on bivariate analysis, however, only gravidity and occupation remained significant independent predictor on logistic regression model. Women with less than 3 previous pregnancies were about 4 times more likely to request for fetal sex determination than women with more than 3 previous pregnancies, (OR 3.8 95%CI 1.52 – 9.44). The professionals were 7 times more likely than the artisans to request to find out about their fetal sex, (OR 7.0 95%CI 1.47 – 333.20).</p> <p>Conclusion</p> <p>This study shows that Nigerian pregnant women desired prenatal ultrasonography mostly for fetal viability, followed by fetal gender determination. These preferences were influenced by their biosocial variables.</p

    Multitasking, but for what benefit? The dilemma facing Nigerian university students regarding part-time working.

    Get PDF
    Students working part-time while studying for a full-time university degree are commonplace in many Western countries. This paper however, examines the historically uncommon part-time working activities and career aspirations among Nigerian university students. In particular, how working is perceived to contribute to developing employability skills, and whether it is influenced by their self-efficacy. Survey data from 324 questionnaires was collected from a federal university, although the data analysis used a mixed-method. The findings indicate that despite low levels of part-time working generally among students, older, more experienced, higher level and female students, place a premium on the skills that part-time work can develop. Moreover, self-efficacy and being female, is a significant predictor in understanding part-time work and career aspirations. This study offers originality by focusing on students’ part-time work, the value working provides, and its link with career aspirations, within a relatively unexplored context of Nigeria

    Bioreactor for microalgal cultivation systems: strategy and development

    Get PDF
    Microalgae are important natural resources that can provide food, medicine, energy and various bioproducts for nutraceutical, cosmeceutical and aquaculture industries. Their production rates are superior compared to those of terrestrial crops. However, microalgae biomass production on a large scale is still a challenging problem in terms of economic and ecological viability. Microalgal cultivation system should be designed to maximize production with the least cost. Energy efficient approaches of using light, dynamic mixing to maximize use of carbon dioxide (CO2) and nutrients and selection of highly productive species are the main considerations in designing an efficient photobioreactor. In general, optimized culture conditions and biological responses are the two overarching attributes to be considered for photobioreactor design strategies. Thus, fundamental aspects of microalgae growth, such as availability of suitable light, CO2 and nutrients to each growing cell, suitable environmental parameters (including temperature and pH) and efficient removal of oxygen which otherwise would negatively impact the algal growth, should be integrated into the photobioreactor design and function. Innovations should be strategized to fully exploit the wastewaters, flue-gas, waves or solar energy to drive large outdoor microalgae cultivation systems. Cultured species should be carefully selected to match the most suitable growth parameters in different reactor systems. Factors that would decrease production such as photoinhibition, self-shading and phosphate flocculation should be nullified using appropriate technical approaches such as flashing light innovation, selective light spectrum, light-CO2 synergy and mixing dynamics. Use of predictive mathematical modelling and adoption of new technologies in novel photobioreactor design will not only increase the photosynthetic and growth rates but will also enhance the quality of microalgae composition. Optimizing the use of natural resources and industrial wastes that would otherwise harm the environment should be given emphasis in strategizing the photobioreactor mass production. To date, more research and innovation are needed since scalability and economics of microalgae cultivation using photobioreactors remain the challenges to be overcome for large-scale microalgae production

    Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Regular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations. Methods: The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model—a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates—with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality—which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds. Findings: The leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2–100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1–290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1–211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4–48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3–37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7–9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles. Interpretation: Long-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere. Funding: Bill & Melinda Gates Foundation
    corecore