324 research outputs found

    Study on Solar KANG Heating System for Cold Areas

    Get PDF
    AbstractThe current rural traditional heated kang cannot meet people's increasing requirements of comfort and environmental protection. This paper propose solar kang heating system in cold regions. System performance and heating effect were analyzed. We selected two typical rooms. One was set in traditional kang, and the other one was solar Kang type. Using temperature recording instrument and 64 roads inspection instrument and other instruments, we test the indoor temperature and the kang surface temperature of two rooms. Solar kang thermal resistance, heat storage, heat dissipation and heating effect were analyzed and compared. The results of the study show this system have the smaller fluctuation, more comfort while alleviating the kang surface overheat or super-cooling problem. It satisfied the requirements of indoor thermal comfort. The warming rate is 5.17°C/h, and the cooling rate is 3.01°C/h. These are slower than traditional Huokang speed. It improved the heat storage capacity of kang body with surface heat dissipation 1237W. Average temperature of the solar kang heating room was improved 3.28°C. It gets the smaller indoor temperature fluctuation. PMV values are concentrated about -0.5, and this basically meet the requirements of the user comfort

    Virtual target screening to rapidly identify potential protein targets of natural products in drug discovery

    Get PDF
    Inherent biological viability and diversity of natural products make them a potentially rich source for new therapeutics. However, identification of bioactive compounds with desired therapeutic effects and identification of their protein targets is a laborious, expensive process. Extracts from organism samples may show desired activity in phenotypic assays but specific bioactive compounds must be isolated through further separation methods and protein targets must be identified by more specific phenotypic and in vitro experimental assays. Still, questions remain as to whether all relevant protein targets for a compound have been identified. The desire is to understand breadth of purposing for the compound to maximize its use and intellectual property, and to avoid further development of compounds with insurmountable adverse effects. Previously we developed a Virtual Target Screening system that computationally screens one or more compounds against a collection of virtual protein structures. By scoring each compound-protein interaction, we can compare against averaged scores of synthetic drug-like compounds to determine if a particular protein would be a potential target of a compound of interest. Here we provide examples of natural products screened through our system as we assess advantages and shortcomings of our current system in regards to natural product drug discovery

    Molecular Signatures of the Primitive Prostate Stem Cell Niche Reveal Novel Mesenchymal-Epithelial Signaling Pathways

    Get PDF
    Signals between stem cells and stroma are important in establishing the stem cell niche. However, very little is known about the regulation of any mammalian stem cell niche as pure isolates of stem cells and their adjacent mesenchyme are not readily available. The prostate offers a unique model to study signals between stem cells and their adjacent stroma as in the embryonic prostate stem cell niche, the urogenital sinus mesenchyme is easily separated from the epithelial stem cells. Here we investigate the distinctive molecular signals of these two stem cell compartments in a mammalian system.We isolated fetal murine urogenital sinus epithelium and urogenital sinus mesenchyme and determined their differentially expressed genes. To distinguish transcripts that are shared by other developing epithelial/mesenchymal compartments from those that pertain to the prostate stem cell niche, we also determined the global gene expression of epidermis and dermis of the same embryos. Our analysis indicates that several of the key transcriptional components that are predicted to be active in the embryonic prostate stem cell niche regulate processes such as self-renewal (e.g., E2f and Ap2), lipid metabolism (e.g., Srebp1) and cell migration (e.g., Areb6 and Rreb1). Several of the enriched promoter binding motifs are shared between the prostate epithelial/mesenchymal compartments and their epidermis/dermis counterparts, indicating their likely relevance in epithelial/mesenchymal signaling in primitive cellular compartments. Based on differential gene expression we also defined ligand-receptor interactions that may be part of the molecular interplay of the embryonic prostate stem cell niche.We provide a comprehensive description of the transcriptional program of the major regulators that are likely to control the cellular interactions in the embryonic prostatic stem cell niche, many of which may be common to mammalian niches in general. This study provides a comprehensive source for further studies of mesenchymal/epithelial interactions in the prostate stem cell niche. The elucidation of pathways in the normal primitive niche may provide greater insight into mechanisms subverted during abnormal proliferative and oncogenic processes. Understanding these events may result in the development of specific targeted therapies for prostatic diseases such as benign prostatic hypertrophy and carcinomas

    Glioblastoma adaptation traced through decline of an IDH1 clonal driver and macro-evolution of a double-minute chromosome

    Get PDF
    In a glioblastoma tumour with multi-region sequencing before and after recurrence, we find an IDH1 mutation that is clonal in the primary but lost at recurrence. We also describe the evolution of a double-minute chromosome encoding regulators of the PI3K signalling axis that dominates at recurrence, emphasizing the challenges of an evolving and dynamic oncogenic landscape for precision medicin

    Glioblastoma adaptation traced through decline of an IDH1 clonal driver and macro-evolution of a double-minute chromosome

    Get PDF
    Background: Glioblastoma (GBM) is the most common malignant brain cancer occurring in adults, and is associated with dismal outcome and few therapeutic options. GBM has been shown to predominantly disrupt three core pathways through somatic aberrations, rendering it ideal for precision medicine approaches. Methods: We describe a 35-year-old female patient with recurrent GBM following surgical removal of the primary tumour, adjuvant treatment with temozolomide and a 3-year disease-free period. Rapid whole-genome sequencing (WGS) of three separate tumour regions at recurrence was carried out and interpreted relative to WGS of two regions of the primary tumour. Results: We found extensive mutational and copy-number heterogeneity within the primary tumour. We identified a TP53 mutation and two focal amplifications involving PDGFRA, KIT and CDK4, on chromosomes 4 and 12. A clonal IDH1 R132H mutation in the primary, a known GBM driver event, was detectable at only very low frequency in the recurrent tumour. After sub-clonal diversification, evidence was found for a whole-genome doubling event and a translocation between the amplified regions of PDGFRA, KIT and CDK4, encoded within a double-minute chromosome also incorporating miR26a-2. The WGS analysis uncovered progressive evolution of the double-minute chromosome converging on the KIT/PDGFRA/PI3K/mTOR axis, superseding the IDH1 mutation in dominance in a mutually exclusive manner at recurrence, consequently the patient was treated with imatinib. Despite rapid sequencing and cancer genome-guided therapy against amplified oncogenes, the disease progressed, and the patient died shortly after. Conclusion: This case sheds light on the dynamic evolution of a GBM tumour, defining the origins of the lethal sub-clone, the macro-evolutionary genomic events dominating the disease at recurrence and the loss of a clonal driver. Even in the era of rapid WGS analysis, cases such as this illustrate the significant hurdles for precision medicine success

    ILC3s restrict the dissemination of intestinal bacteria to safeguard liver regeneration after surgery.

    Get PDF
    It is generally believed that environmental or cutaneous bacteria are the main origin of surgical infections. Therefore, measures to prevent postoperative infections focus on optimizing hygiene and improving asepsis and antisepsis. In a large cohort of patients with infections following major surgery, we identified that the causative bacteria are mainly of intestinal origin. Postoperative infections of intestinal origin were also found in mice undergoing partial hepatectomy. CCR6+ group 3 innate lymphoid cells (ILC3s) limited systemic bacterial spread. Such bulwark function against host invasion required the production of interleukin-22 (IL-22), which controlled the expression of antimicrobial peptides in hepatocytes, thereby limiting bacterial spread. Using genetic loss-of-function experiments and punctual depletion of ILCs, we demonstrate that the failure to restrict intestinal commensals by ILC3s results in impaired liver regeneration. Our data emphasize the importance of endogenous intestinal bacteria as a source for postoperative infection and indicate ILC3s as potential new targets

    Intimal aortic sarcoma mimicking ruptured thoracoabdominal type IV aneurysm. a rare case report and review of the literature

    Get PDF
    Primary intimal aortic sarcoma represents a very rare and highly lethal medical entity. Diagnosis is made either by embolic events caused by the tumor or by surrounding tissue symptoms such as pain. Herein we report an extremely rare case of a 51-year-old man previously operated for ascending aortic aneurysm, who presented with clinical and radiological findings suggestive of a ruptured thoracoabdominal type IV aneurysm. The patient underwent radical resection of the aorta and surrounding tissue with placement of a composite 4-branched graft. The diagnosis was made by frozen section and regular histopathologic examination of the specimen and the patient received adjuvant chemotherapy. Nine months after surgery the patient is still alive and has no signs of recurrence. We review the literature and discuss the option of postoperative chemotherapy

    Interleukin-2/interferon-α2a/13-retinoic acid-based chemoimmunotherapy in advanced renal cell carcinoma: results of a prospectively randomised trial of the German Cooperative Renal Carcinoma Chemoimmunotherapy Group (DGCIN)

    Get PDF
    We performed a prospectively randomised clinical trial to compare the efficacy of four subcutaneous interleukin-2-(sc-IL-2) and sc interferon-α2a (sc-IFN-α2a)-based outpatient regimens in 379 patients with progressive metastatic renal cell carcinoma. Patients with lung metastases, an erythrocyte sedimentation rate ⩽70 mm h−1 and neutrophil counts ⩽6000 μl−1 (group I) were randomised to arm A: sc-IL-2, sc-IFN-α2a, peroral 13-cis-retinoic acid (po-13cRA) (n=78), or arm B: arm A plus inhaled-IL-2 (n=65). All others (group II) were randomised to arm C: arm A plus intravenous 5-fluorouracil (iv-5-FU) (n=116), or arm D: arm A plus po-Capecitabine (n=120). Median overall survival (OS) was 22 months (arm A; 3-year OS: 29.7%) and 18 months (arm B; 3-year OS: 29.2%) in group I, and 18 months (arm C; 3-year OS: 25.7%) and 16 months (arm D; 3-year OS: 32.6%) in group II. There were no statistically significant differences in OS, progression-free survival, and objective response between arms A and B, and between arms C and D, respectively. Given the known therapeutic efficacy of sc-IL-2/sc-INF-α2a/po-13cRA-based outpatient chemoimmunotherapies, our results did not establish survival advantages in favour of po-Capecitabine vs iv-5-FU, and in favour of short-term inhaled-IL-2 in patients with advanced renal cell carcinoma receiving systemic cytokines

    Molecular Signatures of Prostate Stem Cells Reveal Novel Signaling Pathways and Provide Insights into Prostate Cancer

    Get PDF
    BACKGROUND:The global gene expression profiles of adult and fetal murine prostate stem cells were determined to define common and unique regulators whose misexpression might play a role in the development of prostate cancer. METHODOLOGY/PRINCIPAL FINDINGS:A distinctive core of transcriptional regulators common to both fetal and adult primitive prostate cells was identified as well as molecules that are exclusive to each population. Elements common to fetal and adult prostate stem cells include expression profiles of Wnt, Shh and other pathways identified in stem cells of other organs, signatures of the aryl-hydrocarbon receptor, and up-regulation of components of the aldehyde dehydrogenase/retinoic acid receptor axis. There is also a significant lipid metabolism signature, marked by overexpression of lipid metabolizing enzymes and the presence of the binding motif for Srebp1. The fetal stem cell population, characterized by more rapid proliferation and self-renewal, expresses regulators of the cell cycle, such as E2f, Nfy, Tead2 and Ap2, at elevated levels, while adult stem cells show a signature in which TGF-beta has a prominent role. Finally, comparison of the signatures of primitive prostate cells with previously described profiles of human prostate tumors identified stem cell molecules and pathways with deregulated expression in prostate tumors including chromatin modifiers and the oncogene, Erg. CONCLUSIONS/SIGNIFICANCE:Our data indicate that adult prostate stem or progenitor cells may acquire characteristics of self-renewing primitive fetal prostate cells during oncogenesis and suggest that aberrant activation of components of prostate stem cell pathways may contribute to the development of prostate tumors
    corecore