477 research outputs found

    The effect of four commercially available steel decontamination processes on the performance of external coatings

    Get PDF
    External coatings used for corrosion protection often have to perform under severely corrosive environments. One major concern regarding coating performance is the negative effect of soluble salts on the steel substrate at the time of coating application, particularly for marine maintenance coating applications. These salts impact the ability of the applied coating systems to protect the steel in several ways including osmotic coating blistering, promotion of under-film metallic corrosion and coating disbondment. This paper focuses on removal of soluble salts contamination by commercially available decontamination processes in relation to external coating systems. We directly compare the effectiveness of four cleaning methods with the performance of ten coating systems. The methodology of surface contamination and preparation of test panels is discussed. After cleaning, sample evaluation for chloride ion contamination levels was carried out using Field method (commercial chloride ion test kit for surfaces) and Ion Chromatography method. Additionally, Scanning Electron Microscopy Energy Dispersive X-ray Spectroscopy (SEM/EDX) and elemental surface mapping analysis were carried out. Laboratory testing of coating systems included Adhesion, Porosity, Electrochemical Impedance Spectroscopy (EIS) analysis and cyclic UV/Salt Fog exposure. The performance of the ten coatings on all the substrates was good, but there were differences in gloss retention and on the degree of checking of the different coatings. The only significant difference in performance of the coatings compared to the method used for cleaning the substrate was higher undercreep observed for most of the coatings applied to the ultra-high pressure water jetted system. This shows the importance of substrate preparation due to the sensitivity of the coatings to even low levels of salt. Two coatings did not show increased undercreep and these may be more applicable for offshore maintenance applications where dry abrasive blasting is sometimes not used. The chemical treatment cleaning method used prior to coating application did not show any significant positive or negative effect on the performance of the applied coatings. The fact that the only differences in performance for the coatings applied to the differently prepared substrates was seen for undercreep suggests that the difference may be exacerbated for immersion situations. A follow up study to this one will examine the performance of internal coatings using immersion tests, and it will be interesting to see if these show increased effect on coating performance

    Ozanimod to treat relapsing forms of multiple sclerosis: A comprehensive review of disease, drug efficacy and side effects

    Get PDF
    Multiple sclerosis (MS) is a prevalent and debilitating neurologic condition characterized by widespread neurodegeneration and the formation of focal demyelinating plaques in the central nervous system. Current therapeutic options are complex and attempt to manage acute relapse, modify disease, and manage symptoms. Such therapies often prove insufficient alone and highlight the need for more targeted MS treatments with reduced systemic side effect profiles. Ozanimod is a novel S1P (sphingosine-1-phosphate) receptor modulator used for the treatment of clinically isolated syndrome, relapsing–remitting, and secondary progressive forms of multiple sclerosis. It selectively modulates S1P1 and S1P5 receptors to prevent autoreactive lymphocytes from entering the CNS where they can promote nerve damage and inflammation. Ozanimod was approved by the US Food and Drug Administration (US FDA) for the management of multiple sclerosis in March 2020 and has been proved to be both effective and well tolerated. Of note, ozanimod is associated with the following complications: increased risk of infections, liver injury, fetal risk, increased blood pressure, respiratory effects, macular edema, and posterior reversible encephalopathy syndrome, among others. Further investigation including head-to-head clinical trials is warranted to evaluate the efficacy of ozanimod compared with other S1P1 receptor modulators

    Ozanimod to treat relapsing forms of multiple sclerosis: A comprehensive review of disease, drug efficacy and side effects

    Get PDF
    Multiple sclerosis (MS) is a prevalent and debilitating neurologic condition characterized by widespread neurodegeneration and the formation of focal demyelinating plaques in the central nervous system. Current therapeutic options are complex and attempt to manage acute relapse, modify disease, and manage symptoms. Such therapies often prove insufficient alone and highlight the need for more targeted MS treatments with reduced systemic side effect profiles. Ozanimod is a novel S1P (sphingosine-1-phosphate) receptor modulator used for the treatment of clinically isolated syndrome, relapsing–remitting, and secondary progressive forms of multiple sclerosis. It selectively modulates S1P1 and S1P5 receptors to prevent autoreactive lymphocytes from entering the CNS where they can promote nerve damage and inflammation. Ozanimod was approved by the US Food and Drug Administration (US FDA) for the management of multiple sclerosis in March 2020 and has been proved to be both effective and well tolerated. Of note, ozanimod is associated with the following complications: increased risk of infections, liver injury, fetal risk, increased blood pressure, respiratory effects, macular edema, and posterior reversible encephalopathy syndrome, among others. Further investigation including head-to-head clinical trials is warranted to evaluate the efficacy of ozanimod compared with other S1P1 receptor modulators

    An effective genetic algorithm for network coding

    Get PDF
    The network coding problem (NCP), which aims to minimize network coding resources such as nodes and links, is a relatively new application of genetic algorithms (GAs) and hence little work has so far been reported in this area. Most of the existing literature on NCP has concentrated primarily on the static network coding problem (SNCP). There is a common assumption in work to date that a target rate is always achievable at every sink as long as coding is allowed at all nodes. In most real-world networks, such as wireless networks, any link could be disconnected at any time. This implies that every time a change occurs in the network topology, a new target rate must be determined. The SNCP software implementation then has to be re-run to try to optimize the coding based on the new target rate. In contrast, the GA proposed in this paper is designed with the dynamic network coding problem (DNCP) as the major concern. To this end, a more general formulation of the NCP is described. The new NCP model considers not only the minimization of network coding resources but also the maximization of the rate actually achieved at sinks. This is particularly important to the DNCP, where the target rate may become unachievable due to network topology changes. Based on the new NCP model, an effective GA is designed by integrating selected new problem-specific heuristic rules into the evolutionary process in order to better diversify chromosomes. In dynamic environments, the new GA does not need to recalculate target rate and also exhibits some degree of robustness against network topology changes. Comparative experiments on both SNCP and DNCP illustrate the effectiveness of our new model and algorithm

    Generic Delivery of Payload of Nanoparticles Intracellularly via Hybrid Polymer Capsules for Bioimaging Applications

    Get PDF
    Towards the goal of development of a generic nanomaterial delivery system and delivery of the ‘as prepared’ nanoparticles without ‘further surface modification’ in a generic way, we have fabricated a hybrid polymer capsule as a delivery vehicle in which nanoparticles are loaded within their cavity. To this end, a generic approach to prepare nanomaterials-loaded polyelectrolyte multilayered (PEM) capsules has been reported, where polystyrene sulfonate (PSS)/polyallylamine hydrochloride (PAH) polymer capsules were employed as nano/microreactors to synthesize variety of nanomaterials (metal nanoparticles; lanthanide doped inorganic nanoparticles; gadolinium based nanoparticles, cadmium based nanoparticles; different shapes of nanoparticles; co-loading of two types of nanoparticles) in their hollow cavity. These nanoparticles-loaded capsules were employed to demonstrate generic delivery of payload of nanoparticles intracellularly (HeLa cells), without the need of individual nanoparticle surface modification. Validation of intracellular internalization of nanoparticles-loaded capsules by HeLa cells was ascertained by confocal laser scanning microscopy. The green emission from Tb3+ was observed after internalization of LaF3:Tb3+(5%) nanoparticles-loaded capsules by HeLa cells, which suggests that nanoparticles in hybrid capsules retain their functionality within the cells. In vitro cytotoxicity studies of these nanoparticles-loaded capsules showed less/no cytotoxicity in comparison to blank capsules or untreated cells, thus offering a way of evading direct contact of nanoparticles with cells because of the presence of biocompatible polymeric shell of capsules. The proposed hybrid delivery system can be potentially developed to avoid a series of biological barriers and deliver multiple cargoes (both simultaneous and individual delivery) without the need of individual cargo design/modification

    Why Men Matter: Mating Patterns Drive Evolution of Human Lifespan

    Get PDF
    Evolutionary theory predicts that senescence, a decline in survival rates with age, is the consequence of stronger selection on alleles that affect fertility or mortality earlier rather than later in life. Hamilton quantified this argument by showing that a rare mutation reducing survival is opposed by a selective force that declines with age over reproductive life. He used a female-only demographic model, predicting that female menopause at age ca. 50 yrs should be followed by a sharp increase in mortality, a “wall of death.” Human lives obviously do not display such a wall. Explanations of the evolution of lifespan beyond the age of female menopause have proven difficult to describe as explicit genetic models. Here we argue that the inclusion of males and mating patterns extends Hamilton's theory and predicts the pattern of human senescence. We analyze a general two-sex model to show that selection favors survival for as long as men reproduce. Male fertility can only result from matings with fertile females, and we present a range of data showing that males much older than 50 yrs have substantial realized fertility through matings with younger females, a pattern that was likely typical among early humans. Thus old-age male fertility provides a selective force against autosomal deleterious mutations at ages far past female menopause with no sharp upper age limit, eliminating the wall of death. Our findings illustrate the evolutionary importance of males and mating preferences, and show that one-sex demographic models are insufficient to describe the forces that shape human senescence

    Photoacoustic Sentinel Lymph Node Imaging with Self-Assembled Copper Neodecanoate Nanoparticles

    Get PDF
    Photoacoustic tomography (PAT) is emerging as a novel, hybrid, and non-ionizing imaging modality because of its satisfactory spatial resolution and high soft tissue contrast. PAT combines the advantages of both optical and ultrasonic imaging methods. It opens up the possibilities for noninvasive staging of breast cancer and may replace sentinel lymph node (SLN) biopsy in clinic in the near future. In this work, we demonstrate for the first time that copper can be used as a contrast metal for near-infrared detection of SLN using PAT. A unique strategy is adopted to encapsulate multiple copies of Cu as organically soluble small molecule complexes within a phospholipid-entrapped nanoparticle. The nanoparticles assumed a size of 80–90 nm, which is the optimum hydrodynamic diameter for its distribution throughout the lymphatic systems. These particles provided at least 6-fold higher signal sensitivity in comparison to blood, which is a natural absorber of light. We also demonstrated that high SLN detection sensitivity with PAT can be achieved in a rodent model. This work clearly demonstrates for the first time the potential use of copper as an optical contrast agent

    Protocol of a Randomized Controlled Trial of Culturally Sensitive Interventions to Improve African Americans' and Non-African Americans' Early, Shared, and Informed Consideration of Live Kidney Transplantation: The talking about Live Kidney Donation (TALK) study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Live kidney transplantation (LKT) is underutilized, particularly among ethnic/racial minorities. The effectiveness of culturally sensitive educational and behavioral interventions to encourage patients' early, shared (with family and health care providers) and informed consideration of LKT and ameliorate disparities in consideration of LKT is unknown.</p> <p>Methods/Design</p> <p>We report the protocol of the Talking About Live Kidney Donation (TALK) Study, a two-phase study utilizing qualitative and quantitative research methods to design and test culturally sensitive interventions to improve patients' shared and informed consideration of LKT. Study Phase 1 involved the evidence-based development of culturally sensitive written and audiovisual educational materials as well as a social worker intervention to encourage patients' engagement in shared and informed consideration of LKT. In Study Phase 2, we are currently conducting a randomized controlled trial in which participants with progressing chronic kidney disease receive: 1) usual care by their nephrologists, 2) usual care plus the educational materials, or 3) usual care plus the educational materials and the social worker intervention. The primary outcome of the randomized controlled trial will include patients' self-reported rates of consideration of LKT (including family discussions of LKT, patient-physician discussions of LKT, and identification of an LKT donor). We will also assess differences in rates of consideration of LKT among African Americans and non-African Americans.</p> <p>Discussion</p> <p>The TALK Study rigorously developed and is currently testing the effectiveness of culturally sensitive interventions to improve patients' and families' consideration of LKT. Results from TALK will provide needed evidence on ways to enhance consideration of this optimal treatment for patients with end stage renal disease.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov number, <a href="http://www.clinicaltrials.gov/ct2/show/NCT00932334">NCT00932334</a></p
    corecore