125 research outputs found

    Spin lifetimes and strain-controlled spin precession of drifting electrons in zinc blende type semiconductors

    Full text link
    We study the transport of spin polarized electrons in n-GaAs using spatially resolved continuous wave Faraday rotation. From the measured steady state distribution, we determine spin relaxation times under drift conditions and, in the presence of strain, the induced spin splitting from the observed spin precession. Controlled variation of strain along [110] allows us to deduce the deformation potential causing this effect, while strain along [100] has no effect. The electric field dependence of the spin lifetime is explained quantitatively in terms of an increase of the electron temperature.Comment: 5 pages, 6 figure

    On the Connection of Anisotropic Conductivity to Tip Induced Space Charge Layers in Scanning Tunneling Spectroscopy of p-doped GaAs

    Full text link
    The electronic properties of shallow acceptors in p-doped GaAs{110} are investigated with scanning tunneling microscopy at low temperature. Shallow acceptors are known to exhibit distinct triangular contrasts in STM images for certain bias voltages. Spatially resolved I(V)-spectroscopy is performed to identify their energetic origin and behavior. A crucial parameter - the STM tip's work function - is determined experimentally. The voltage dependent potential configuration and band bending situation is derived. Ways to validate the calculations with the experiment are discussed. Differential conductivity maps reveal that the triangular contrasts are only observed with a depletion layer present under the STM tip. The tunnel process leading to the anisotropic contrasts calls for electrons to tunnel through vacuum gap and a finite region in the semiconductor.Comment: 11 pages, 8 figure

    Assessing Financial Loss due to Pluvial Flooding and the Efficacy of Risk-Reduction Measures in the Residential Property Sector

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11269-014-0833-6A novel quantitative risk assessment for residential properties at risk of pluvial flooding in Eindhoven, The Netherlands, is presented. A hydraulic model belonging to Eindhoven was forced with low return period rainfall events (2, 5 and 10-year design rainfalls). Three scenarios were analysed for each event: a baseline and two risk-reduction scenarios. GIS analysis identified areas where risk-reduction measures had the greatest impact. Financial loss calculations were carried out using fixed-threshold and probabilistic approaches. Under fixed-threshold assessment, per-event Expected Annual Damage (EAD) reached €38.2 m, with reductions of up to €454,000 resulting from risk-reduction measures. Present costs of flooding reach €1.43bn when calculated over a 50-year period. All net-present value figures for the risk-reduction measures are negative. Probabilistic assessment yielded EAD values up to more than double those of the fixed-threshold analysis which suggested positive net-present value. To the best of our knowledge, the probabilistic method based on the distribution of doorstep heights has never before been introduced for pluvial flood risk assessment. Although this work suggests poor net-present value of risk-reduction measures, indirect impacts of flooding, damage to infrastructure and the potential impacts of climate change were omitted. This work represents a useful first step in helping Eindhoven prepare for future pluvial flooding. The analysis is based on software and tools already available at the municipality, eliminating the need for software upgrading or training. The approach is generally applicable to similar cities.European Commission Seventh Framework Program (EC FP7

    Assessment of the effectiveness of a risk-reduction measure on pluvial flooding and economic loss in Eindhoven, the Netherlands

    Get PDF
    Open Access journalCopyright © 2013 The Authors. Published by Elsevier Ltd.12th International Conference on Computing and Control for the Water Industry, CCWI2013Cities are increasingly assessing and reducing pluvial flood risk. Quantitative assessment of the effectiveness of risk-reduction measures is required. We use hydraulic simulation with GIS-based financial analysis to assess the pluvial flood risk for Eindhoven, The Netherlands. Analysis is carried out for four scenarios: two rainfall events, with and without separation of the combined sewer-stormwater network. Flooding statistics show how the risk-reduction measure impacts local flooding. Financial analysis demonstrates the saving resulting from the risk-reduction measure. Expected annual damage is reduced by c.€130,500. City authorities are better equipped in making cost-benefit decisions regarding implementation of pluvial flood risk-reduction measures.EC FP7 project PREPARED: Enabling Chang

    Setup of an 8 keV laboratory transmission x-ray microscope

    Get PDF
    This article presents a concept and the first results for the setup of an 8keV laboratory transmission x-ray microscope with a polycapillary optic as condenser at the BliX in Berlin. The incentive of building such a microscope is that the penetration depth for hard x-rays is much higher than in the soft x-ray range, e.g. the water window. Therefore, it is possible to investigate even dense materials such as metal compounds, bones or geological samples. The future aim is to achieve a spatial resolution better than 200 nm

    Excitonic photoluminescence in symmetric coupled double quantum wells subject to an external electric field

    Full text link
    The effect of an external electric field F on the excitonic photoluminescence (PL) spectra of a symmetric coupled double quantum well (DQW) is investigated both theoretically and experimentally. We show that the variational method in a two-particle electron-hole wave function approximation gives a good agreement with measurements of PL on a narrow DQW in a wide interval of F including flat-band regime. The experimental data are presented for an MBE-grown DQW consisting of two 5 nm wide GaAs wells, separated by a 4 monolayers (MLs) wide pure AlAs central barrier, and sandwiched between Ga_{0.7}Al_{0.3}As layers. The bias voltage is applied along the growth direction. Spatially direct and indirect excitonic transitions are identified, and the radius of the exciton and squeezing of the exciton in the growth direction are evaluated variationally. The excitonic binding energies, recombination energies, oscillator strengths, and relative intensities of the transitions as functions of the applied field are calculated. Our analysis demonstrates that this simple model is applicable in case of narrow DQWs not just for a qualitative description of the PL peak positions but also for the estimation of their individual shapes and intensities.Comment: 5 pages, 4 figures (accepted in Phys. Rev. B

    Ultra-narrow linewidth CW sub-THz generation using GS based OFCG and n-i-pn-i-p superlattice photomixers

    Get PDF
    A report is presented on the photonic synthesis of ultra-narrow line-width continuous-wave (CW) sub-THz signals using a gain-switching (GS) based optical frequency comb generator (OFCG), selective optical filtering and a n-i-pn-i-p superlattice photomixer. This setup provides continuous tunability with a tuning resolution in the range of 0.1 Hz at 120 GHz and full width at half maximum of the generated signals below the limits of the measurement setup (< 10 Hz). The advantages of this system make it a very good candidate for applications requiring extremely low phase noise and continuous tunability, such as high resolution spectroscopy in the sub-THz and THz range.Work supported by the Spanish Ministry of Science and Technology through the project TEC2009-14525-C02-02. The work by A.R. Criado has been supported by the Spanish Ministry of Science and Technology under the FPI Program, Grant# BES2010-030290.Publicad

    Continuous wave sub-THz photonic generation with ultra-narrow linewidth, ultra-high resolution, full frequency range coverage and high long-term frequency stability

    Get PDF
    We report on a photonic system for generation of high quality continuous-wave (CW) sub-THz signals. The system consists on a gain-switching-based optical frequency comb generator (GS-OFCG), a two-optical-modes selection mechanism and a n-i-pn-i-p superlattice photomixer. As mode selection mechanism, both selective tunable optical filtering using Fabry&-Pérot tunable filters (FPTFs) and Optical Injection Locking (OIL) are evaluated. The performance of the reported system surpasses in orders of magnitude the performance of any commercially available optical mm-wave and sub-THz generation system in a great number of parameters. It matches and even overcomes those of the best commercially available electronic THz generation systems. The performance parameters featured by our system are: linewidth <<10 Hz at 120 GHz, complete frequency range coverage (60&-140 GHz) with a resolution in the order of 0.1 Hz at 120 GHz ({hbox{10}} -12} of generated frequency), high long term frequency stability (5 Hz deviation over one hour). Most of these values are limited by the measurement instrumentation accuracy and resolution, thus the actual values of the system could be better than the reported ones. The frequency can be extended straightforwardly up to 1 THz extending the OFCG frequency span. This system is compact, robust, reliable, offers a very high performance, especially suited for sub-THz photonic local oscillators and high resolution spectroscopy.This work was supported by the Spanish Ministry of Science and Technology through the Project TEC2009-14525-C02-02. The work of Á. R. Criado has been supported by the Spanish Ministry of Science and Technology under the FPI Program, Grant BES2010-030290
    corecore