451 research outputs found

    Superhyperfine interactions in Ce3+ doped LiYF4 crystal: ENDOR measurements

    Full text link
    The first observation of the resolved Mims electron-nuclear double resonance (ENDOR) spectra from the nearby and remote nuclei of 19F and 7Li nuclei on impurity Ce3+ ions in LiYF4 crystal is reported. It shows that LiYF4:Ce3+ system can be exploited as a convenient matrix for performing spin manipulations and adjusting quantum computation protocols while ENDOR technique could be used for the investigation of electron-nuclear interaction with all the nuclei of the system and exploited for the electron-nuclear spin manipulations.Comment: 4 pages, 2 figures, 1 Table. Reported on Theor-2017 (Kazan, Russia) Conferenc

    Hypervelocity dust particle impacts observed by the Giotto Magnetometer and Plasma Experiments

    Get PDF
    We report thirteen very short events in the magnetic field of the inner magnetic pile‐up region of comet Halley observed by the Giotto magnetometer experiment together with simultaneous plasma data obtained by the Johnstone plasma analyzer and the ion mass spectrometer experiments. The events are due to dust impacts in the milligram range on the spacecraft at the relative velocity between the cemetery dust and the spacecraft of 68 km/sec. They are generally consistent with dust impact events derived from spacecraft attitude perturbations by the Giotto camera [Curdt and Keller, private communication]. Their characteristic shape generally involves a sudden decrease in magnetic field magnitude, a subsequent overshoot beyond initial field values and an asymptotic approach to the initial field somewhat reminiscent of the magnetic field signature after the AMPTE releases in the solar wind. These observations give a new way of analyzing ultra‐fast dust particles incident on a spacecraft

    The Large Scale Distribution of Neutral Hydrogen in the Fornax Region

    Full text link
    Using HIPASS data, we have searched for HI in a ~25x25 sq.deg. region centred on the Fornax cluster. Within a velocity search range of 300 - 3700 km/s and a lower flux limit of ~40 mJy, 110 galaxies with HI emission were detected, one of which is previously uncatalogued. None of the detections has early-type morphology. Previously unknown velocities for 14 galaxies have been determined, with a further 4 velocity measurements being significantly dissimilar to published values. Identification of an optical counterpart is relatively unambiguous for more than ~90% of our HI galaxies. The galaxies appear to be embedded in a sheet at the cluster velocity which extends for more than 30 deg across the search area. At the nominal cluster distance of ~20 Mpc, this corresponds to an elongated structure more than 10 Mpc in extent. A velocity gradient across the structure is detected, with radial velocities increasing by \~500 km/s from SE to NW. The clustering of galaxies evident in optical surveys is only weakly suggested in the spatial distribution of our HI detections. Our results suggest a considerable deficit of HI-rich galaxies in the centre of the cluster. However, relative to the field, there is a 3(+/-1)-fold excess of HI-rich galaxies in the outer parts of the cluster where galaxies may be infalling towards the cluster for the first time.Comment: 16 pages, 14 figures, 110 HI spectra. To be published in MNRA

    Nuclear magnetic resonance spectroscopy of Chlorophyll

    Get PDF

    Environmental effects on galaxy evolution. II: quantifying the tidal features in NIR-images of the cluster Abell 85

    Full text link
    This work is part of a series of papers devoted to investigate the evolution of cluster galaxies during their infall. In the present article we imaged in NIR a selected sample of galaxies through- out the massive cluster Abell 85 (z = 0.055). We obtained (JHK) photometry for 68 objects, reaching 1 mag/arcsec^2 deeper than 2MASS. We use these images to unveil asymmetries in the outskirts of a sample of bright galaxies and develop a new asymmetry index, alpha_An, which allows to quantify the degree of disruption by the relative area occupied by the tidal features on the plane of the sky. We measure the asymmetries for a subsample of 41 large area objects finding clear asymmetries in ten galaxies, most of them being in groups and pairs projected at different clustercentric distances, some of them located beyond R500 . Combining information on the Hi-gas content of blue galaxies and the distribution of sub-structures across Abell 85, with the present NIR asymmetry analysis, we obtain a very powerful tool to confirm that tidal mechanisms are indeed present and are currently affecting a fraction of galaxies in Abell 85. However, when comparing our deep NIR images with UV-blue images of two very disrupted (jellyfish) galaxies in this cluster, we discard the presence of tidal 1 interactions down to our detection limit. Our results suggest that ram-pressure stripping is at the origin of such spectacular disruptions. We conclude that across a complex cluster like Abell 85, environment mechanisms, both gravitational and hydrodynamical, are playing an active role in driving galaxy evolution.Comment: 30 pages, 13 figures, Accepted for Publication in A

    Behavior of nanoparticle clouds around a magnetized microsphere under magnetic and flow fields

    Get PDF
    When a micron-sized magnetizable particle is introduced into a suspension of nanosized magnetic particles, the nanoparticles accumulate around the microparticle and form thick anisotropic clouds extended in the direction of the applied magnetic field. This phenomenon promotes colloidal stabilization of bimodal magnetic suspensions and allows efficient magnetic separation of nanoparticles used in bioanalysis and water purification. In the present work, size and shape of nanoparticle clouds under the simultaneous action of an external uniform magnetic field and the flow have been studied in details. In experiments, dilute suspension of iron oxide nanoclusters (of a mean diameter of 60 nm) was pushed through a thin slit channel with the nickel microspheres (of a mean diameter of 50μ\mum) attached to the channel wall. The behavior of nanocluster clouds was observed in the steady state using an optical microscope. In the presence of strong enough flow, the size of the clouds monotonically decreases with increasing flow speed in both longitudinal and transverse magnetic fields. This is qualitatively explained by enhancement of hydrodynamic forces washing the nanoclusters away from the clouds. In the longitudinal field, the flow induces asymmetry of the front and the back clouds. To explain the flow and the field effects on the clouds, we have developed a simple model based on the balance of the stresses and particle fluxes on the cloud surface. This model, applied to the case of the magnetic field parallel to the flow, captures reasonably well the flow effect on the size and shape of the cloud and reveals that the only dimensionless parameter governing the cloud size is the ratio of hydrodynamic-to-magnetic forces - the Mason number. At strong magnetic interactions considered in the present work (dipolar coupling parameter α2\alpha \geq 2), the Brownian motion seems not to affect the cloud behavior

    Observation of an orbital interaction-induced Feshbach resonance in 173-Yb

    Full text link
    We report on the experimental observation of a novel inter-orbital Feshbach resonance in ultracold 173-Yb atoms, which opens the possibility of tuning the interactions between the 1S0 and 3P0 metastable state, both possessing vanishing total electronic angular momentum. The resonance is observed at experimentally accessible magnetic field strengths and occurs universally for all hyperfine state combinations. We characterize the resonance in the bulk via inter-orbital cross-thermalization as well as in a three-dimensional lattice using high-resolution clock-line spectroscopy.Comment: 5 pages, 4 figure

    Influence of the Orifice on Measured Pressures

    Get PDF
    The influence of different orifices on the result of measuring the same pressure distributions is the subject of this note. A circular cylinder is exposed to an air stream perpendicular to its axis and its pressure distribution is repeatedly determined. The pressures measured on the downstream half of the cylinder do not change for the orifice sizes used in the tests
    corecore