2,650 research outputs found

    Arbitrary l-state solutions of the rotating Morse potential by the asymptotic iteration method

    Full text link
    For non-zero \ell values, we present an analytical solution of the radial Schr\"{o}dinger equation for the rotating Morse potential using the Pekeris approximation within the framework of the Asymptotic Iteration Method. The bound state energy eigenvalues and corresponding wave functions are obtained for a number of diatomic molecules and the results are compared with the findings of the super-symmetry, the hypervirial perturbation, the Nikiforov-Uvarov, the variational, the shifted 1/N and the modified shifted 1/N expansion methods.Comment: 15 pages with 1 eps figure. accepted for publication in Journal of Physics A: Mathematical and Genera

    Thermoconvective flow velocity in a high-speed magnetofluid seal after it has stopped

    Get PDF
    Convective flow is investigated in the high-speed (linear velocity of the shaft seal is more than 1 m/s) magnetofluid shaft seal after it has been stopped. Magnetic fluid is preliminarily heated due to viscous friction in the moving seal. After the shaft has been stopped, nonuniform heated fluid remains under the action of a high-gradient magnetic field. Numerical analysis has revealed that in this situation, intense thermomagnetic convection is initiated. The velocity of magnetic fluid depends on its viscosity. For the fluid with viscosity of 2 × 10 -4 m 2/s the maximum flow velocity within the volume of magnetic fluid with a characteristic size of 1 mm can attain a value of 10 m/s

    Mathematical Structure of Relativistic Coulomb Integrals

    Full text link
    We show that the diagonal matrix elements ,, where OO =1,β,iαnβ={1,\beta,i\mathbf{\alpha n}\beta} are the standard Dirac matrix operators and the angular brackets denote the quantum-mechanical average for the relativistic Coulomb problem, may be considered as difference analogs of the radial wave functions. Such structure provides an independent way of obtaining closed forms of these matrix elements by elementary methods of the theory of difference equations without explicit evaluation of the integrals. Three-term recurrence relations for each of these expectation values are derived as a by-product. Transformation formulas for the corresponding generalized hypergeometric series are discussed.Comment: 13 pages, no figure

    Orthogonal polynomials of discrete variable and Lie algebras of complex size matrices

    Full text link
    We give a uniform interpretation of the classical continuous Chebyshev's and Hahn's orthogonal polynomials of discrete variable in terms of Feigin's Lie algebra gl(N), where N is any complex number. One can similarly interpret Chebyshev's and Hahn's q-polynomials and introduce orthogonal polynomials corresponding to Lie superlagebras. We also describe the real forms of gl(N), quasi-finite modules over gl(N), and conditions for unitarity of the quasi-finite modules. Analogs of tensors over gl(N) are also introduced.Comment: 25 pages, LaTe

    Landau (\Gamma,\chi)-automorphic functions on \mathbb{C}^n of magnitude \nu

    Full text link
    We investigate the spectral theory of the invariant Landau Hamiltonian \La^\nu acting on the space FΓ,χν{\mathcal{F}}^\nu_{\Gamma,\chi} of (Γ,χ)(\Gamma,\chi)-automotphic functions on \C^n, for given real number ν>0\nu>0, lattice Γ\Gamma of \C^n and a map χ:ΓU(1)\chi:\Gamma\to U(1) such that the triplet (ν,Γ,χ)(\nu,\Gamma,\chi) satisfies a Riemann-Dirac quantization type condition. More precisely, we show that the eigenspace {\mathcal{E}}^\nu_{\Gamma,\chi}(\lambda)=\set{f\in {\mathcal{F}}^\nu_{\Gamma,\chi}; \La^\nu f = \nu(2\lambda+n) f}; \lambda\in\C, is non trivial if and only if λ=l=0,1,2,...\lambda=l=0,1,2, .... In such case, EΓ,χν(l){\mathcal{E}}^\nu_{\Gamma,\chi}(l) is a finite dimensional vector space whose the dimension is given explicitly. We show also that the eigenspace EΓ,χν(0){\mathcal{E}}^\nu_{\Gamma,\chi}(0) associated to the lowest Landau level of \La^\nu is isomorphic to the space, {\mathcal{O}}^\nu_{\Gamma,\chi}(\C^n), of holomorphic functions on \C^n satisfying g(z+\gamma) = \chi(\gamma) e^{\frac \nu 2 |\gamma|^2+\nu\scal{z,\gamma}}g(z), \eqno{(*)} that we can realize also as the null space of the differential operator j=1n(2zjzˉj+νzˉjzˉj)\sum\limits_{j=1}\limits^n(\frac{-\partial^2}{\partial z_j\partial \bar z_j} + \nu \bar z_j \frac{\partial}{\partial \bar z_j}) acting on C\mathcal C^\infty functions on \C^n satisfying ()(*).Comment: 20 pages. Minor corrections. Scheduled to appear in issue 8 (2008) of "Journal of Mathematical Physics

    Overlap integral for quantum skyrmions

    Full text link
    We made use a simplified form for the quantum skyrmion wave function based on the spin coherent states to obtain the analytical expression for appropriate overlap integral.Comment: 5 pages, no figure
    corecore