research

Landau (\Gamma,\chi)-automorphic functions on \mathbb{C}^n of magnitude \nu

Abstract

We investigate the spectral theory of the invariant Landau Hamiltonian \La^\nu acting on the space FΞ“,χν{\mathcal{F}}^\nu_{\Gamma,\chi} of (Ξ“,Ο‡)(\Gamma,\chi)-automotphic functions on \C^n, for given real number Ξ½>0\nu>0, lattice Ξ“\Gamma of \C^n and a map Ο‡:Ξ“β†’U(1)\chi:\Gamma\to U(1) such that the triplet (Ξ½,Ξ“,Ο‡)(\nu,\Gamma,\chi) satisfies a Riemann-Dirac quantization type condition. More precisely, we show that the eigenspace {\mathcal{E}}^\nu_{\Gamma,\chi}(\lambda)=\set{f\in {\mathcal{F}}^\nu_{\Gamma,\chi}; \La^\nu f = \nu(2\lambda+n) f}; \lambda\in\C, is non trivial if and only if Ξ»=l=0,1,2,...\lambda=l=0,1,2, .... In such case, EΞ“,χν(l){\mathcal{E}}^\nu_{\Gamma,\chi}(l) is a finite dimensional vector space whose the dimension is given explicitly. We show also that the eigenspace EΞ“,χν(0){\mathcal{E}}^\nu_{\Gamma,\chi}(0) associated to the lowest Landau level of \La^\nu is isomorphic to the space, {\mathcal{O}}^\nu_{\Gamma,\chi}(\C^n), of holomorphic functions on \C^n satisfying g(z+\gamma) = \chi(\gamma) e^{\frac \nu 2 |\gamma|^2+\nu\scal{z,\gamma}}g(z), \eqno{(*)} that we can realize also as the null space of the differential operator βˆ‘j=1n(βˆ’βˆ‚2βˆ‚zjβˆ‚zΛ‰j+Ξ½zΛ‰jβˆ‚βˆ‚zΛ‰j)\sum\limits_{j=1}\limits^n(\frac{-\partial^2}{\partial z_j\partial \bar z_j} + \nu \bar z_j \frac{\partial}{\partial \bar z_j}) acting on C∞\mathcal C^\infty functions on \C^n satisfying (βˆ—)(*).Comment: 20 pages. Minor corrections. Scheduled to appear in issue 8 (2008) of "Journal of Mathematical Physics

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 11/12/2019