We give a uniform interpretation of the classical continuous Chebyshev's and
Hahn's orthogonal polynomials of discrete variable in terms of Feigin's Lie
algebra gl(N), where N is any complex number. One can similarly interpret
Chebyshev's and Hahn's q-polynomials and introduce orthogonal polynomials
corresponding to Lie superlagebras.
We also describe the real forms of gl(N), quasi-finite modules over gl(N),
and conditions for unitarity of the quasi-finite modules. Analogs of tensors
over gl(N) are also introduced.Comment: 25 pages, LaTe