75 research outputs found

    A large area detector for neutrons between 2 and 100 MeV

    Get PDF
    A neutron detector sensitive from 2 to 100 MeV is described. The detector is designed for high altitude balloon flight to measure the flux, energy and direction of albedo neutrons from the earth and to search for solar neutrons. A neutron scatter from a proton is required in each of two liquid scintillator tanks spaced 1 meter apart. The energy of the recoil proton in the first tank is obtained from pulse height analysis of the scintillator output. The energy of the recoil neutron is obtained from its time of flight between the tanks. The detector has been calibrated with 15.3 MeV neutrons and mu mesons. The minimum detectable flux is 10(-4) neutron/sq cm/sec at a counting rate of one per minute; the energy resolution is 12% at 15 MeV and 30% at 100 MeV. The angle between the incoming neutron and the recoil neutron is measured to + or - 10 deg

    Collection of Athermal Phonons into Doped Germanium Thermistors Using Quasiparticle Trapping

    Get PDF
    We have developed a low‐temperature particle detector that uses a novel quasiparticle trapping mechanism to funnel athermal phonon energy from an 80 mg Ge absorber into a 1.6 mg doped Ge thermistor via a superconducting Al film. We report on pulse height spectra obtained at 320 mK by scanning a 241Am alpha source along the device, and show that up to 20% of the energy deposited in the Ge absorber by a 5.5 MeV alpha particle interaction can be collected into a thermistor via quasiparticle trapping. We show that this device is sensitive to the position of an alpha particle interaction in the Ge absorber for interaction distances of up to 5 mm from a quasiparticle trap

    Response of an Excitatory-Inhibitory Neural Network to External Stimulation: An Application to Image Segmentation

    Full text link
    Neural network models comprising elements which have exclusively excitatory or inhibitory synapses are capable of a wide range of dynamic behavior, including chaos. In this paper, a simple excitatory-inhibitory neural pair, which forms the building block of larger networks, is subjected to external stimulation. The response shows transition between various types of dynamics, depending upon the magnitude of the stimulus. Coupling such pairs over a local neighborhood in a two-dimensional plane, the resultant network can achieve a satisfactory segmentation of an image into ``object'' and ``background''. Results for synthetic and and ``real-life'' images are given.Comment: 8 pages, latex, 5 figure

    Zero-temperature responses of a 3D spin glass in a field

    Full text link
    We probe the energy landscape of the 3D Edwards-Anderson spin glass in a magnetic field to test for a spin glass ordering. We find that the spin glass susceptibility is anomalously large on the lattice sizes we can reach. Our data suggest that a transition from the spin glass to the paramagnetic phase takes place at B_c=0.65, though the possibility B_c=0 cannot be excluded. We also discuss the question of the nature of the putative frozen phase.Comment: RevTex, 4 pages, 4 figures, clarifications and added reference

    Ising Spin Glasses in a Magnetic Field

    Full text link
    Ground states of the three dimensional Edwards-Anderson spin glass are computed in the presence of an external magnetic field. Our algorithm is sufficiently powerful for us to treat systems with up to 600 spins. We perform a statistical analysis of how the ground state changes as the field is increased, and reach the conclusion that the spin glass phase at zero temperature does not survive in the presence of any finite field. This is in agreement with the droplet model or scaling predictions, but in sharp disagreement with the mean field picture. For comparison, we also investigate a dilute mean field spin glass model where an Almeida-Thouless line is present.Comment: 4 pages, 4 figures, Revte

    Short-Range Ising Spin Glass: Multifractal Properties

    Full text link
    The multifractal properties of the Edwards-Anderson order parameter of the short-range Ising spin glass model on d=3 diamond hierarchical lattices is studied via an exact recursion procedure. The profiles of the local order parameter are calculated and analysed within a range of temperatures close to the critical point with four symmetric distributions of the coupling constants (Gaussian, Bimodal, Uniform and Exponential). Unlike the pure case, the multifractal analysis of these profiles reveals that a large spectrum of the α\alpha -H\"older exponent is required to describe the singularities of the measure defined by the normalized local order parameter, at and below the critical point. Minor changes in these spectra are observed for distinct initial distributions of coupling constants, suggesting an universal spectra behavior. For temperatures slightly above T_{c}, a dramatic change in the F(α)F(\alpha) function is found, signalizing the transition.Comment: 8 pages, LaTex, PostScript-figures included but also available upon request. To be published in Physical Review E (01/March 97

    Electronic correlation effects and the Coulomb gap at finite temperature

    Full text link
    We have investigated the effect of the long-range Coulomb interaction on the one-particle excitation spectrum of n-type Germanium, using tunneling spectroscopy on mechanically controllable break junctions. The tunnel conductance was measured as a function of energy and temperature. At low temperatures, the spectra reveal a minimum at zero bias voltage due to the Coulomb gap. In the temperature range above 1 K the Coulomb gap is filled by thermal excitations. This behavior is reflected in the temperature dependence of the variable-range hopping resitivity measured on the same samples: Up to a few degrees Kelvin the Efros-Shkovskii lnRT1/2R \propto T^{-1/2} law is obeyed, whereas at higher temperatures deviations from this law are observed, indicating a cross-over to Mott's lnRT1/4R \propto T^{-1/4} law. The mechanism of this cross-over is different from that considered previously in the literature.Comment: 3 pages, 3 figure

    Glass-Like Heat Conduction in High-Mobility Crystalline Semiconductors

    Full text link
    The thermal conductivity of polycrystalline semiconductors with type-I clathrate hydrate crystal structure is reported. Ge clathrates (doped with Sr and/or Eu) exhibit lattice thermal conductivities typical of amorphous materials. Remarkably, this behavior occurs in spite of the well-defined crystalline structure and relatively high electron mobility (100cm2/Vs\sim 100 cm^2/Vs). The dynamics of dopant ions and their interaction with the polyhedral cages of the structure are a likely source of the strong phonon scattering.Comment: 4 pages, 3 postscript figures, to be published, Phys. Rev. Let

    From Linear to Nonlinear Response in Spin Glasses: Importance of Mean-Field-Theory Predictions

    Full text link
    Deviations from spin-glass linear response in a single crystal Cu:Mn 1.5 at % are studied for a wide range of changes in magnetic field, ΔH\Delta H. Three quantities, the difference TRM(MFCZFC)TRM-(MFC-ZFC), the effective waiting time, twefft_{w}^{eff}, and the difference TRM(tw)TRM(tw=0)TRM(t_{w})-TRM(t_{w}=0) are examined in our analysis. Three regimes of spin-glass behavior are observed as ΔH\Delta H increases. Lines in the (T,ΔH)(T,\Delta H) plane, corresponding to ``weak'' and ``strong'' violations of linear response under a change in magnetic field, are shown to have the same functional form as the de Almeida-Thouless critical line. Our results demonstrate the existence of a fundamental link between static and dynamic properties of spin glasses, predicted by the mean-field theory of aging phenomena.Comment: 9 pages, 10 figure
    corecore