5,044 research outputs found

    Density Fluctuation Effects on Collective Neutrino Oscillations in O-Ne-Mg Core-Collapse Supernovae

    Full text link
    We investigate the effect of matter density fluctuations on supernova collective neutrino flavor oscillations. In particular, we use full multi-angle, 3-flavor, self-consistent simulations of the evolution of the neutrino flavor field in the envelope of an O-Ne-Mg core collapse supernova at shock break-out (neutrino neutronization burst) to study the effect of the matter density "bump" left by the He-burning shell. We find a seemingly counterintuitive increase in the overall electron neutrino survival probability created by this matter density feature. We discuss this behavior in terms of the interplay between the matter density profile and neutrino collective effects. While our results give new insights into this interplay, they also suggest an immediate consequence for supernova neutrino burst detection: it will be difficult to use a burst signal to extract information on fossil burning shells or other fluctuations of this scale in the matter density profile. Consistent with previous studies, our results also show that the interplay of neutrino self-coupling and matter fluctuation could cause a significant increase in the electron neutrino survival probability at very low energyComment: 12 pages, 11 figures. This is a pre-submission version of the pape

    Using airborne LiDAR Survey to explore historic-era archaeological landscapes of Montserrat in the eastern Caribbean

    Get PDF
    This article describes what appears to be the first archaeological application of airborne LiDAR survey to historic-era landscapes in the Caribbean archipelago, on the island of Montserrat. LiDAR is proving invaluable in extending the reach of traditional pedestrian survey into less favorable areas, such as those covered by dense neotropical forest and by ashfall from the past two decades of active eruptions by the Soufrière Hills volcano, and to sites in localities that are inaccessible on account of volcanic dangers. Emphasis is placed on two aspects of the research: first, the importance of ongoing, real-time interaction between the LiDAR analyst and the archaeological team in the field; and second, the advantages of exploiting the full potential of the three-dimensional LiDAR point cloud data for purposes of the visualization of archaeological sites and features

    The homestake surface-underground scintillations: Description

    Get PDF
    Two new detectors are currently under construction at the Homestake Gold Mine a 140-ton Large Area Scintillation Detector (LASD) with an upper surface area of 130 square meters, a geometry factor (for an isotropic flux) of 1200 square meters, sr, and a depth of 4200 m.w.e.; and a surface air shower array consisting of 100 scintillator elements, each 3 square meters, spanning an area of approximately square kilometers. Underground, half of the LASD is currently running and collecting muon data; on the surface, the first section of the air shower array will begin operation in the spring of 1985. The detectors and their capabilities are described

    Indeterminacy of Spatiotemporal Cardiac Alternans

    Full text link
    Cardiac alternans, a beat-to-beat alternation in action potential duration (at the cellular level) or in ECG morphology (at the whole heart level), is a marker of ventricular fibrillation, a fatal heart rhythm that kills hundreds of thousands of people in the US each year. Investigating cardiac alternans may lead to a better understanding of the mechanisms of cardiac arrhythmias and eventually better algorithms for the prediction and prevention of such dreadful diseases. In paced cardiac tissue, alternans develops under increasingly shorter pacing period. Existing experimental and theoretical studies adopt the assumption that alternans in homogeneous cardiac tissue is exclusively determined by the pacing period. In contrast, we find that, when calcium-driven alternans develops in cardiac fibers, it may take different spatiotemporal patterns depending on the pacing history. Because there coexist multiple alternans solutions for a given pacing period, the alternans pattern on a fiber becomes unpredictable. Using numerical simulation and theoretical analysis, we show that the coexistence of multiple alternans patterns is induced by the interaction between electrotonic coupling and an instability in calcium cycling.Comment: 20 pages, 10 figures, to be published in Phys. Rev.

    Incorporating expert opinion and fine-scale vegetation mapping into statistical models of faunal distribution

    Get PDF
    1. Abiotic environmental predictors and broad-scale vegetation have been used widely to model the regional distributions of faunal species within forested regions of Australia. These models have been developed using stepwise statistical procedures but incorporate only limited expert involvement of the type sometimes advocated in distribution modelling. The objectives of this study were twofold. First, to evaluate techniques for incorporating fine-scaled vegetation and growth-stage mapping into models of species distribution. Secondly, to compare methods that incorporate expert opinion directly into statistical models derived using stepwise statistical procedures. 2. Using faunal data from north-east New South Wales, Australia, logistic regression models using fine-scale vegetation and expert opinion were compared with models employing only abiotic and broad vegetation variables. 3. Vegetation and growth-stage information was incorporated into models of species distribution in two ways, both of which used expert opinion to derive new explanatory variables. The first approach amalgamated fine-scaled vegetation classes into broader classes of ecological relevance to fauna. In the second approach, ordinal habitat indices were derived from vegetation and growth-stage mapping using rules specified by an expert panel. These indices described habitat features thought to be relevant to the faunal groups studied (e.g. tree hollow availability, fleshy fruit production). Landscape composition was calculated using these new variables within a 500-m and 2-km radius of each site. Each habitat index generated a spatially neutral variable and two spatial context variables. 4. Expert opinion was incorporated during the pre-modelling, model-fitting and post -modelling stages. At the pre-modelling stage experts developed new explanatory variables based on mapped fine-scale vegetation and growth-stage information. At the model-fitting stage an expert panel selected a subset of potential explanatory variables from the available set. At the post-modelling stage expert opinion modified or refined maps of predicted species distribution generated by statistical models. For comparative purposes expert opinion was also used to develop maps of species distribution by defining rules within a geographical information system, without the aid of statistical modelling. 5. Predictive accuracy was not improved significantly by incorporating habitat indices derived by applying expert opinion to fine-scaled vegetation and growth-stage mapping. Use of expert input at the pre-modelling stage to derive and select potential explanatory variables therefore does not provide more information than that provided by remotely mapped vegetation. 6. The incorporation of expert opinion at the model-fitting or post-modelling stages resulted in small but insignificant gains in predictive accuracy. The predictive accuracy of purely expert models was less than that achieved by approaches based on statistical modelling. 7. The study, one of few available evaluations of expert opinion in models of species distribution, suggests that expert modification of fitted statistical models should be confined to species for which models are grossly in error, or for which insufficient data exist to construct solely statistical models

    Charge-coupled devices with fast timing for astrophysics and space physics research

    Get PDF
    A charge coupled device is under development with fast timing capability (15 millisecond full frame readout, 30 microsecond resolution for measuring the time of individual pixel hits). The fast timing CCD will be used in conjunction with a CsI microfiber array or segmented scintillator matrix detector to detect x rays and gamma rays with submillimeter position resolution. The initial application will be in conjunction with a coded aperture hard x ray/gamma ray astronomy instrument. We describe the concept and the readout architecture of the device

    Model for Spreading of Liquid Monolayers

    Full text link
    Manipulating fluids at the nanoscale within networks of channels or chemical lanes is a crucial challenge in developing small scale devices to be used in microreactors or chemical sensors. In this context, ultra-thin (i.e., monolayer) films, experimentally observed in spreading of nano-droplets or upon extraction from reservoirs in capillary rise geometries, represent an extreme limit which is of physical and technological relevance since the dynamics is governed solely by capillary forces. In this work we use kinetic Monte Carlo (KMC) simulations to analyze in detail a simple, but realistic model proposed by Burlatsky \textit{et al.} \cite{Burlatsky_prl96,Oshanin_jml} for the two-dimensional spreading on homogeneous substrates of a fluid monolayer which is extracted from a reservoir. Our simulations confirm the previously predicted time-dependence of the spreading, X(t→∞)=AtX(t \to \infty) = A \sqrt t, with X(t)X(t) as the average position of the advancing edge at time tt, and they reveal a non-trivial dependence of the prefactor AA on the strength U0U_0 of inter-particle attraction and on the fluid density C0C_0 at the reservoir as well as an U0U_0-dependent spatial structure of the density profile of the monolayer. The asymptotic density profile at long time and large spatial scale is carefully analyzed within the continuum limit. We show that including the effect of correlations in an effective manner into the standard mean-field description leads to predictions both for the value of the threshold interaction above which phase segregation occurs and for the density profiles in excellent agreement with KMC simulations results.Comment: 21 pages, 9 figures, submitted to Phys. Rev.
    • …
    corecore