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Charge-coupled devices with fast timing for astrophysics and space physics research

M. L. Cherry1, P. P. Altice', Jr., S. B. Ellison', T. G. Guzik', J. R. Macri2, M. L. McConnell2, G. Y. McLean3,
J. Ryan2, P. Suni3

1Department of Physics & Astronomy, Louisiana State University, Baton Rouge, LA 70803
2Space Science Center, University of New Hampshire, Durham, NH 03824

3Suni Imaging Microsystems, Inc., Mountain View, CA 94041

ABSTRACT

A charge coupled device is under development with fast timing capability (15 millisecond full frame readout, 30
microsecond resolution for measuring the time of individual pixel bits). The Fast Timing CCD will be used in conjunction
with a CsI microfiber array or segmented scintillator matrix detector to detect X-rays and gamma rays with submillimeter
position resolution. The initial application will be in conjunction with a coded aperture hard X-ray/gamma ray astronomy
instrument. We describe the concept and the readout architecture of the device.

Key Words: Hard X-ray, gamma ray, charge coupled devices, time resolution, coded aperture

1. INTRODUCTION

Charge coupled devices (CCDs) are, in many ways, ideal light detectors. They are high resolution, reliable analog
sampled devices with good quantum efficiency over a wide range of wavelengths from the infrared to the X-ray regime.
Typically, however, scanning is limited to video rates (30 frames/second). For applications requiring fast timing or dynamic
image capture (e.g., high-speed automated inspection on manufacturing or packaging lines, short-duration exposures of rapidly
moving objects, surveillance from a moving vehicle or aircraft, or high-resolution microscope studies of transient phenomena
under conditions where a mechanical shutter would induce unacceptable vibrations), presently available CCDs may be too
slow. A fast timing CCD would have numerous applications for viewing images when either the subject or the camera is in
motion. For spectroscopic applications (in non-destructive testing, medical imaging, fluorescence studies, astronomy,
material science and surface physics measurements) where no more than a single photon/pixel must be detected in each readout
in order to measure the photon energy, a CCD with fast timing capable of isolating individual photons would be extremely
useful. In long-duration exposures of low intensity or low contrast objects (for example, radiological searches for small
lesions in the presence of motion induced by the patient's breathing, or extended satellite observations of faint astronomical
objects in the presence of an ionizing cosmic ray background passing through the detector), a fast timing CCD would allow
the final image to be summed from discrete, short-duration individual exposures in which the blurring due to motion can be
removed and cosmic ray events can be vetoed. We are currently developing a CCD readout device with 10-30 sec timing
resolution suitable for such applications.

In astronomy, observation of transient or highly variable sources like X-ray binaries or AM Her stars requires time
resolution usually available only with photomultiplier tubes. Occultations require millisecond timing, and wide-angle
searches for optical counterparts of gamma ray bursts would benefit from good timing resolution as well. Although
photomultipliers have nanosecond timing capability, they are not capable of simultaneous wide-field imaging. In addition,
photomultipliers are rapidly becoming less and less available at large telescope facilities as they are being replaced by CCDs.
The case of hard X-ray/y-ray astronomy (20-600 keV) offers an interesting example, as described in Sec. 2. The best angular
resolution so far available at these energies has been the 13' of arc obtained by the SIGMA satellite experiment'. Our group
is currently developing the Minute of Arc Resolution Gamma ray Imaging Experiment (MARGIE), a coded aperture
instrument designed for a wide field of view and minute of arc resolution2'3. MARGIE employs a room-temperature cadmium
zinc telluride (CZT) readout45 for the energy range 20-200 keY. At higher energies (50-600 keY) an array of CsI (Tl)
microfibers2'6 or a segmented CsI matrix detector7 serves as the active X-ray detector, with the optical scintillation from the
CsI being detected with a crystal silicon CCD array. Millisecond time resolution is desirable for observing pulsars (e.g., the
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Crab) and gamma ray bursts; time resolution —30 isec makes it possible to operate in anticoincidence with an active charged
particle shield to veto cosmic ray events striking a representative balloon or spacecraft payload once every � 200 jisec. The
capability to isolate individual X-ray photons is required to measure photon energies.

In order to satisfy the requirements for a coded aperture X-ray/y-ray imager with 1 'resolution, a Bi-Directional Fast
Timing CCD is being developed for use with existing CsI microfiber arrays or segmented CsI matrix detectors. The CCD
development involves two main efforts: 1) The inter-pixel charge transfer requires a new on-chip clocking architecture. 2)
The readout will require a low-noise multi-input amplifier-sample/hold-multiplexor incorporated into a custom CMOS
Application Specific Integrated Circuit (ASIC) mated to the CCD. Position-sensitive CsI microfiber arrays and the
capabilities of currently available CCDs, with particular reference to the X-ray/y-ray astronomy application, are discussed in
Sec. 3. The concept of the Bi-Directional Fast Timing CCD and the CCD/ASIC development are described in Sec. 4.

2. POTENTIAL APPLICATIONS

2.1. X-rayly-Ray Astrophysics and Solar Physics

Angular resolution is an essential ingredient in hard X-ray and y-ray observations of solar flares and discrete
astrophysical sources. Improvements in angular resolution permit the identification of individual sources, both isolated
sources and those located in crowded regions of the sky; reduce the number of candidate sources in detector error boxes on the
sky; and improve the signal-to-noise for discrete sources. The development described here will be applicable to either a
satellite or balloon-borne coded aperture hard X-ray telescope designed to cover the energy range 20 -600keV with a wide field
of view (6-3O half angle) and angular resolution 2-6.

In the coded aperture approach, a uniformly redundant array (URA) mask pattern minimizes the sidelobes in the
reconstructed image of the sky by requiring that the autocorrelation gives a delta function spike in the direction of a source,
and gives a uniform background in other directions. A further advantage of the coded aperture approach is that source and
background are measured simultaneously, thereby minimizing systematic effects caused by time- or zenith angle-dependent
background changes. Other coded aperture instruments have worked successfully at both lower and higher energies: SIGMA'
covered the energy range up to 1.3 MeV, with 13' angular resolution; GRiP8 worked up to 5MeV with 0.6° resolution; DGT9
observed up to 9.3 MeV with 3.8° angular resolution; and ART-P'° operated over the range 4-60 keV with 6' resolution. We
have chosen to optimize our efforts for the energy range 20-600 keV.

A high angular resolution, broad field-of-view hard X-ray instrument would be able to address many outstanding
scientific questions in astrophysics and solar physics. Possible scientific goals which could be addressed include:
. Search for positron line emission both at 511 keV and (redshifted) at lower energies from pulsars, gamma ray bursts,

black hole candidates, the Galactic Center, and (utilizing the wide field of view) the Galactic Plane;
. provide measurements of the spectrum and source position of 7-ray bursts in the 20-600 keV range with both a wide

field of view and minute of arc angular resolution. By correlating such observations at several wavelengths our
understanding of this most baffling class of high energy sources would be greatly facilitated;

. provide high sensitivity spectral studies in the 20-600 keV region to distinguish between high-temperature thermal
sources and low-temperature sources with hard non-thermal tails;

. provide extensive sky coverage at high angular resolution;. search for additional gamma-ray pulsars;. study the accretion flows and neutron star magnetopheres of X-ray binaries in the 20-600 keV energy band where little
is known about the detailed emission processes;

S provide spectral shape measurements and temporal studies of Cygnus X-1 and other candidate galactic black hole binary
systems to determine the electron temperature at the source, study the "high-energy tail" emission and evaluate models
of the 7-ray emission;

• provide high angular resolution AGN measurements to correlate with higher energy CGRO observations and study the
contribution of AGNs to the diffuse cosmic background;
observe crowded source regions such as the Galactic Center providing spectral measurements with high angular
resolution over an extended, contiguous time period (10-20 days for a long duration balloon mission);
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. measure the fundamental and higher harmonics of cyclotron features associated with X-ray pulsars to provide an
accurate physical interpretation;. study the morphology of solar flare regions following the population of accelerated electrons and observing the
frequency and extent to which these electrons escape the flaring region;

. use the flux of hard X-rays from electron bremsstrahung at several hundred keV as a surrogate for imaging nuclear
emissions during solar flares;. provide new studies of low intensity and high variability emission, either in small flares or brightenings or prior to the
hard X-ray and y-ray emission in larger flares; and

. provide high time and angular resolution of hard X-ray emission over the full solar disk.

CZT provides good sensitivity with —200 p.m position resolution and �1O keV (FWHM) energy resolution45. The 1.5
mm CZT thickness limits us, however, to a maximum energy —200 keY. Thicker CZT detectors could be used in order to go
to higher energies, but then the CZT cost would increase. Rather than use CZT at the high energies, high resolution
segmented CsI scintillators have been developed which will provide both the sensitivity and position resolution required.2'6'7
Fig. 1 shows a photograph of a CsI microfiber array grown at Radiation Monitoring Devices.2'6 Similar microfiber arrays
have been grown with up to 2" diameter, 300 j.m thickness, and 125 jim position resolution.

The scintillator readout is accomplished with a CCD array. The CsI (Ti) output spectrum peaks near the same
wavelength as the sensitivity of silicon semiconductor detectors (540 nm). The scintillator light yield (20 optical
photonslkeV) and CCD noise levels (10-25 pA/cm2 at 20'C thermal, 10 e/pixel readout noise) combine to give a threshold
below 30 keY. Both the CsI and the CCD resolution are better than the coded aperture mask element diameter (0.5 mm),
leading to an angular resolution (at 1.5 m mask-detector separation) of 1'. The CCD capabilities are driven largely by the
requirements that the detector must be able to measure individual photon energies, and that the detector must operate in the
presence of a flux of cosmic ray protons. An anticoincidence shield surrounding the instrument will register a cosmic ray hit
every 100-200 jisec, so that a CCD operated in conjunction with this cosmic ray veto must have a time resolution
significantly better than 100 jisec. A similar time resolution is appropriate for studies of fast pulsars or for high time
resolution studies of gamma ray bursts.

2.2. Medical Imaging

Current X-ray mammography devices typically rely on photographic film. Although film provides significantly better
spatial resolution than existing commercially available CCD instruments (which provide resolution of 8-9 line pairs/mm at
best), its limited dynamic range and contrast are disadvantages"2. These disadvantages provide real limitations in cases where
the radiologist needs to study soft tissue masses or microcalifications in breast tissue, or search for faint lesions in the
presence of nearby high-density glandular material, or perform dual-energy comparisons of attenuation in carcinoma and
normal tissue'3. By combining a relatively thick CsI microfiber array with a high resolution Fast-Timing CCD readout, by
removing the standard reducing fiber optic taper, and by reducing the noise level (and hence the need for cooling), one has the
advantages of potentially lower X-ray exposure for the patient, higher contrast and energy resolution, reduced complexity and
cost, and position resolution suitable for detailed diagnostic applications.

As an example, in a mammography examination, a patient's typical X-ray exposure may be on the order of 1O X-
ray/mm2. A frequent complaint by physicians is the lack of contrast sometimes seen in dense tissue regions. A solution to
this problem is to use higher energy X-rays. As the energy increases, however, the fraction of Compton-scattered photons
increases. These show up as photons coming from spurious directions. In other words, Compton scattering produces an
unwanted background. In the approximation that tissue is essentially water, then as an example at 60 keY the ratio of the
incoherent scattering cross section to the photoelectric cross section is nearly 30 and the situation is severely background-
limited. This background can be removed by measuring the individual X-ray energies, which can only be accomplished in a
detector with sufficient time resolution to identify individual events.

For a sharp image, one desires a signal-to-noise ratio——- —10 in a single pixel, corresponding to 100 events/pixel in

the absence of background (e.g., if the noise can be removed by accepting only events with energy in the photopeak). Let r
be the ratio of scattered flux to unscattered flux (where r may be significantly greater than unity). If the energy is not
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measured and the scattered photons cannot be separated from the unscattered, then N — rS and —---- —10, so that the required

number of "good" (unscattered photopeak) events becomes S 100 r. The total number of incident X-rays must then be 100
r2 per pixel. If a CCD consists of Nrows rows x Nrows columns with square pixels of pitch d, and each row is read outin a
time trow then the total readout time for a frame is T = Nrows x trow. If the incident X-rays are detected in some number of
frames n, then the required flux is

2
lOOr X—raysnoise = 2 2 (1)
d nT mm — sec

If, however, the energy can be measured, then only unscattered photopeak X-rays are accepted and N= S =100. The total
number of incident photons is then 100 r and thepatient's dosage is afactor ofr lower than in the previous case:

lOOr x—rays
Fno noise = —j—-- 2 • (2)

d nT mm — sec

For the Fast Timing CCD to measure individual X-ray photons, the flux must be kept sufficiently low that individual
events can be resolved. Individual events can be identified if the flux F is sufficiently low that there is no more than 1 event
for every 2 columns over the frame readout time T (see Sec. 4.):

F < = ( 256
)2 (

50j.tm
)2 (10.tsec )

300
(3)

2 Nrows d2 T Nrows d trow mm2-sec

In that case, the total exposure time needed to collect 100 events/pixel is

Nrows trow
texp ( 256 )2

psec
130 sec. (4)

A time of 130 seconds is far too long for a patient to remain stationary, but the observation can readily be broken into small
intervals. By the use of fiducial markers on the patient, the images from these small intervals can then be oriented and added

together to give a composite image with a potentially significant decrease in total patient X-ray dosage.

3. X-RAY/'y-RAY DETECTOR DEVELOPMENT

3.1 CsI Microfiber Arrays

Although CsI has a reasonably high X-ray absorption cross section, 92% of 300 keV X-rays pass through 1 mm of
CsI without interaction (96% at 500 keV). For a 5 mm thickness these fractions of unattenuated photons go down to 65% at
300 keV and 80% at 500 keV. In a uniform, homogeneous scintillator, however, as the detector thickness goes up, the spot
size of the emitted scintillation light increases correspondingly: Since the light is emitted essentially isotropically, the spot
size diameter is comparable to the detector thickness. One therefore has competing requirements: A thick detector is needed
for high detection efficiency, while a thin detector is needed for good position resolution. The X-ray astronomy experiment
position resolution requirements demand a spot size <0.5 mm.

CsI microfiber detectors offer a possible solution26. CsI (11) layers are evaporated in such a way that a film is formed
of 10 - 100 tm diameter fibers extending from the top to the bottom surface of the film. The elongated fiber structure acts as
an array of light pipes to channel light to the bottom surface by total internal reflection. Fig. 1 shows an SEM micrograph
of the resulting very regular column structure for a 100pm thick CsI array grown on a fiber optic substrate. Fig. 2 shows a
closeup of a 300pm film, and Fig. 3 shows (for comparison) a sample of Gd2O2S. Figs. 2 and 3 also show the very regular
pattern etched into the fiber optic substrate.
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% •'.•I

1tzij
iflOrimFigure 1. Scanning electron microscope picture of a thickCsI(T1) fiber layer deposited at RMD.

Figure 2. SEM closeup view of 300pm film. The substrate pattern can be seen clearly at the bottom of the
columns, with the well-separated CsI fibers growing up from the tops of the substrate pedestals.

Ii

fiberoptic substrate. The irregular structure and poor packing fraction of standard phosphor screen material
compared to our CsI films can be clearly seen.

SPIE Vol. 2806 I 555

Figure 3. A view shown for comparison of standard granular commercial Gd2O2S deposited on the same
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Light output from 300pm thick CsI arrays is 7 times that of therbium-doped glass scintillators at 70-420 kVp and
1 .5 times that of a commercial Lanex screen at 28 kVp. At 200 kVp, the modulation seen with a 14 lp/mm phantom
(corresponding to 36im line separation) is 15%, and 63% at 4 lp/mm (125pm line separation); at 420 kVp, the observed
modulation is 20% at 14 lp/mm.

3.2 Standard Optical Readout—Limitations of Currently Available Large Area Silicon Pixel Arrays

The CsI light output can be detected by a CCD array. Perhaps the most suitable commercially available CCD readout
is produced by Loral Fairchild. Loral Fairchild currently manufactures CCD full frame image sensor arrays with l5.tm pitch
in matrices of up to 4096 horizontal by 4096 vertical photosites, corresponding to an area of 62 x 62 mm2. An array of 6 x6
such CCD's covers a total area in excess of 1380 cm2. The structure is composed of individual CCD elements with no empty
spaces, so that a fill factor of 85 - 90% is achieved. The readout architecture allows both horizontal and vertical binning,
which can speed up the readout time and at the same time permit averaging over blemished pixels (thereby minimizing the
need for selecting zero-defect arrays and therefore reducing costs). A further increase in readout speed is achieved by reading
out the imaging area into independent 2048 x 4096 upper and lower halves with either separate or common clocking. Video
information from each half is provided as a single sequential readout stream of 2048 lines each containing 4096 analogue

pulse heights. Quantum efficiency over the range 450-750 nm is —35%. Dark current is reduced by adding an additional
implant under one vertical phase to collect the photoelectrons with all vertical clocks low during the integration interval. At
room temperature, this Multi-Pinned Phase operating mode reduces the dark current to 0.025 nA/cm2 with a further decrease
by a factor of 2 for every 4-6°C drop in temperature. Given the observed CsI (Tl) output light level of 20 photonslkeV and a
35% CCD quantum efficiency, we expect 350 electron-hole pairs at 50keY. If the pixels are binned into 8 x 8 'superpixels"
(each 120 x 120 2) the full array can be read out in 50 msec (corresponding to 5.2 MHz, as compared to the maximum
possible readout rate for the array of 8 MHz). In 50msec, assuming a moderate cooling of the array from 25°Cto a nominal
operating temperature of 0°C, the superpixel dark current corresponds to a noise threshold of 8 keV.

For the 7-ray astronomy application, the combination of the Loral Fairchild architecture (which allows both horizontal
and vertical binning) and the low photon intensities (compared to medical and dental X-ray beams) permits one to clock the
array sufficiently quickly so that a 50msec frame contains only a small number of pixels above the dark current level. In
principle, one could therefore clock 2048 lines out as a single sequential data stream, suppress pixels below a preset threshold
(dark current) and above a preset maximum (charged protons) and send the resulting stream of pulse heights to an analog-to-
digital converter (ADC), with two ADC's per CCD. A layer of 6 x 6 CCD's could be serviced by a system of 72 ADC
channels with a 380 nsec conversion time/channel and a single CPU.

With a readout time of 50msec, the integration time must be tint ? 100 msec. For fast timing observations of
pulsars and gamma ray bursts, however, it would be desirable to have significantly faster timing. Charged protons passing
through the CsJJCCD will be recognized by their large pulse heights; protons striking the mask or shields and generating
bremsstrahlung photons will not be easily removed from the data, however, without a capability to measure the event time to
better than 100 .tsec (the average time between protons striking anywhere on the instrument). The noise, power, and cost
constraints imposed by the 5MHz clocking and 380 nsec ADC conversion time are also significant. In Sec. 4 below, we
describe the capabilities of the Bi-Directional Fast Timing CCD being developed at Suni Imaging Microsystems, Inc. to
address these issues.

4. BI-DIRECTIONAL FAST TIMING CCD

4.1 CCD Bi-Directional Architecture

With a standard readout architecture, the photosites collect light for some integration time tint >>50 msec. If a
photon strikes a photosite (i,j) during the integration, a photoelectron is generated at that pixel. At the end of the integration,
the charge on each pixel is clocked vertically upward one row at a time. After each vertical transfer, one row of charge has
been transferred into the horizontal readout register at the top of the chip. Now the individual pixel (column) charge packets
in the horizontal readout register can be clocked horizontally to the output amplifier; the entire array is again shifted
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vertically; the next row is shifted horizontally; and the charge transfer continues until all rows and columns have been shifted
to the output amplifier.

Rather than the photon arriving at pixel (i,j) during the integration time, however, imagine that the photon arrives at
(i,j) at a time t.y after the start of the readout. If the time between vertical transfers is trow, then ty/ trow rows will have
been clocked upwards by the time the photon arrives at (i,j). A photoelectron will still be produced at (i,j), but it will be read
out as fit had been produced during the integration time at pixel (i + t71 trow, i). In the standard situation, a photon
arriving during the readout and producing a spurious signal would be considered a background. A shutter is frequently used to
block off the CCD during the readout in order to prevent this background.

In the case of low fluxes, however, it is possible to use this situation to determine the arrival time t,. Imagine that
X-rays are absorbed in a scintillator microfiber or metal matrix array with position resolution 1OO.tm, and the scintillator is
viewed by a Bi-Directional CCD array with pixel pitch 5Oim. The optical signal from the scintillator will then be seen
simultaneously by pixels in at least two contiguous columns. As shown in Fig. 4, if columns are clocked continuously
(i.e., if tint 0), with odd columns clocked upward and even columns clocked downward, then the signature of an event will
be hits in two adjacent columns at (i + ty I trow, 2j + 1) and (i ty I trow, 2j + 2). The actual row position is the average

I [(i + + (i !1_)], and the event arrival time is given by the difference [(i + - (i2 trow trow 2 trow trow

If there are grows rows, then the time to read out the entire array is grows trow ( 15 msec for the case of a 5 1 2 x
512 array clocking vertically every 30 sec). The flux must be sufficiently low that the chances of seeing more than one
event per two adjacent columns per full-frame readout time is small:

F< (5)
2n0 d2 trow

where d is the pixel size. (For d = 5O.tm in the example above, the limiting flux is then 3 x iO X-rays cm2 sec.)

For the 50 msec Loral readout, the train of 5 MHz horizontal clock pulses generates noise and draws power, as does the
ADC (which must perform a pulse height conversion in 380 nsec). In the Bi-Directional concept, however, note that at the

limiting flux, the average number of hits per row is << 1 . In the case of a 100pm diameter spot viewed by 5O.tmrow
pixels, an average of 4 pixels will be illuminated per hit, so the number of pixels per row will be 2/nrow, which is still small.
The complications imposed by the short ADC conversion time and fast horizontal clocking are therefore eased for the Bi-
Directional CCD if a sparse readout is employed. By feeding the n/2 (e.g., 256 in the example above) outputs from the odd
columns at the top through a multiplexor to a single ADC, and the nroJ2 outputs from the even (bottom) columns through a
multiplexor to a second ADC, the horizontal clocking is eliminated and (allowing for a maximum of m pixels hit per row)
the ADC conversion time becomes t,Jm (for m=1O in the example above, this is 3 isec per ADC conversion).

The Bi-Directional CCD described above has been designed at Suni Imaging Microsystems, Inc. The array utilizes
two-phase clocking, and is implemented as a collection of pixel columns with separate metal clock lines connecting to the
polysilicon gates in each column. The direction of charge transfer is determined by the ordering of the polysilicon gates,
which alternates from column to column. The independence of the clock lines guarantees that an electrical defect in a single
column will not affect adjacent columns, and the closely-spaced metal lines between columns are driven identically, so metal-
to-metal electrical shorts between these lines will have little effect.

Improving the time resolution while simultaneously slowing down the clocking can be expected to have a significant
impact on both noise levels and charge transfer efficiency. The largest contribution to multi-phase CCD dark current is the
thermal noise due to surface states at the Si-Si02 interface. If there is a large population of electrons in the valence band and
unoccupied surface states available to accept the electrons, then electrons can jump from the valence band to form a dark
current electron-hole pair. A technique to minimize this source of dark noise is the Multi-Pinned-Phase (MPP) approach, in
which the vertical clocks are all left in the low state during the integration cycle. With a negative bias sufficiently low that
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the potential at the Si-Si02 interface drops below that of the substrate, holes from the channel stops will migrate into the
interface, thereby filling the interface states and suppressing the valence electron transitions. However, when the clocks are
switched from inverting to non-inverting in order to transfer the accumulated charge, some of the trapped holes will be ejected
from the interface with sufficient velocity to release spurious electron-hole pairs by impact ionization. This impact
ionization signal is minimized by slowing down the leading edge rise time of the clock pulse. In the case of a typical MPP
CCD, the vertical registers are therefore operated inverted, but the faster horizontal registers are operated non-inverted in order
to minimize the spurious impact ionization contribution. This is legitimate because the time required for the horizontal
shifting is small, and so the build-up of dark noise is conespondingly small. In the Bi-Directional case, one has the
advantages of both slow clocking and fast readout: Since the horizontal register is eliminated, the clock pulses are slow (trow
—30 j.tsec) and so the leading edge rise times are correspondingly slow; and the full frame readout time is small (Nmwstow 15
msec for a 512 x 512 array), so the dark noise build-up is small.

At low light levels, the pixel-to-pixel charge transfer is dominated by thermal diffusion with a time constant

t=— , (6)

where d is again the pixel size and D is the diffusion coefficient (D = 34.9 cm2/sec for electrons in silicon at 300K, D = 12.4
cm2/sec for holes). For the 15 jtm pixels of the Loral 442 A, the electron diffusion time is t =26 nsec. For a 3-phase CCD,
the charge transfer efficiency (for a single pixel) is

cm = (1 -et )3 (7)

so that CTE can start to fall for sufficiently short time t. For example, CTh = 99.86% for t = 200 nsec, 'r = 26 nsec. With
this efficiency, only 24% of the charge will be transferred across 1024 pixels (half of a 30 mm Loral 442 A). In the case ofa
512 x 512 (d =50 jim pitch, t = 30 psec) Bi-Directional CCD, however, 'r = 290nsec and Cli is no longer limited by
thermal diffusion.

Column I . • • 2j+1 • • • 511

L L L Amplifiers
nnflnn nnn Row 1

Charge Transfer i HT

Charge Cloud

u 512

7 Amplifiers
2 • • 2j+2 . 512

Figure4. Bi-Directional CCD readout scheme.
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4.2 CCD Readout

For the X-ray astronomy application at 50keV, the CsI scintillator produces 20 optical photons/keY which are detected
with 35% quantumefficiency by the CCD. If each photon produces 1 electron and the signal is split over 4 pixels, then the
50keV threshold signal corresponds to approximately 90 eipixel. If the total (readout plus thermal) noise is 10 e/pixel
(rms), then the chance of spurious hits at the 9 level simultaneously in 4 contiguous pixels in a 512 x 512 array is
exceedingly small.

Thermal noise is reduced by shortening the frame readout time. The dominant noise contributor is then expected to be
the on-chip amplifier. As the charge leaves the shift register, it is deposited on the gate of the output FET. The resulting
voltage is V =q/C, where C is the associated output node capacitance. In order to increase the sensitivity, one decreases C -
i.e., one makes the amplifier physically smaller. Before another charge packet is transferred out, however, the capacitor must
be recharged to a fixed potential. This reference level has an uncertainty (kTC)' =4.0x 1O C"2 e (mis) at room
temperature, or (kT/C)' volts (rms) which increases with decreasing capacitance. The intrinsic 1/f noise of the output
transistor also increases with decreasing size, so that there is a trade-off between sensitivity and output node read noise. In
practice, the optimum geometric size for the amplifier turns out to be —10-100 j.tm on a side. In the case of a (25mm)2 Bi-
Directional Fast Timing CCD with 256amplifiers across the top and 256 across the bottom, the required physical space
(-4OOim/arnplifier) is available.

In the current Bi-Directional CCD designed at Suni, the primary on-chip amplifier is a source-follower type, for simple
low-noise operation. In addition, the current design includes an experimental floating-gate amplifier with a bipolar junction
transistor output stage. The floating-gate amplifier has been designed for low-noise, high-speed perfirmance. The choice of
amplifiers is made via on-chip switches in series with the output pad.

Proper readout chain design is critical to low-noise CCD performance. For the BiDirectional CCD, with an
independent amplifier chain for each column, the readout circuitry will be implemented in 1 .2 pm CMOS directly on the
CCD. A preliminary design has been developed by Lawrence Berkeley Lab and Suni Imaging Microsystems, Inc., based
closely on the previous LBL designs for the SVX2 chip used at Fermilab'4"5 and the silicon detector on the ACE spacecraft
cosmic ray heavy ion experiment. Two readouts will service each CCD, with a total footprint <(2.6 cm)2. Each readout
ASIC will have 256 input channels (i.e., 256 for the top, 256 for the bottom of the CCD). Each readout channel will have
an independent preamplifier, amplifier, double correlated sampling noise suppression, sample and hold, and ADC with a 30 ps
event clocking rate. The ADC uses a low-power Wilkinson converter with a Gray code counter sensitive to both rising and
falling edges of a common clock measuring time-above-threshold of a decreasing ramp of all 256channels. ADC resolution
will be 9 bits, with a power dissipation —2 mW/channel for the full readout chain.

Gain corrections will be necessary and will depend on frequent calibrations. An 241AjX-ray source produces X-rays in
coincidence with an alpha particle. If the source is imbedded in a small plastic scintillator viewed by a photomultiplier tube,
than every X-ray is accompanied by a simultaneous a-particle pulse which gives a 'calibration flag" from the PMT. If the
calibration source is placed near the CCD but to the side out of the field of view, -5% of the calibration flags may be
accompanied by X-ray hits in the CCD, which can be recognized by the timing coincidence. (A similar method was used by
Forrest et al.'6 for the continuous in-flight calibration of the Solar Maximum Mission Gamma Ray Spectrometer.)

A BiDirectional CCD designed at Suni has been fabricated using a 1.2 rim, 2-metal, 2-poly process. The first
prototypes came off the fabrication line in June 1996, were DC-tested and packaged in July, and are currently undergoing full
testing.
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