162 research outputs found

    Stretching and squeezing of sessile dielectric drops by the optical radiation pressure

    Full text link
    We study numerically the deformation of sessile dielectric drops immersed in a second fluid when submitted to the optical radiation pressure of a continuous Gaussian laser wave. Both drop stretching and drop squeezing are investigated at steady state where capillary effects balance the optical radiation pressure. A boundary integral method is implemented to solve the axisymmetric Stokes flow in the two fluids. In the stretching case, we find that the drop shape goes from prolate to near-conical for increasing optical radiation pressure whatever the drop to beam radius ratio and the refractive index contrast between the two fluids. The semi-angle of the cone at equilibrium decreases with the drop to beam radius ratio and is weakly influenced by the index contrast. Above a threshold value of the radiation pressure, these "optical cones" become unstable and a disruption is observed. Conversely, when optically squeezed, the drop shifts from an oblate to a concave shape leading to the formation of a stable "optical torus". These findings extend the electrohydrodynamics approach of drop deformation to the much less investigated "optical domain" and reveal the openings offered by laser waves to actively manipulate droplets at the micrometer scale

    Phase imaging of irradiated foils at the OMEGA EP facility using phase-stepping X-ray Talbot–Lau deflectometry

    Get PDF
    Producción CientíficaDiagnosing the evolution of laser-generated high energy density (HED) systems is fundamental to develop a correct understanding of the behavior of matter under extreme conditions. Talbot–Lau interferometry constitutes a promising tool, since it permits simultaneous single-shot X-ray radiography and phase-contrast imaging of dense plasmas. We present the results of an experiment at OMEGA EP that aims to probe the ablation front of a laser-irradiated foil using a Talbot–Lau X-ray interferometer. A polystyrene (CH) foil was irradiated by a laser of 133 J, 1 ns and probed with 8 keV laser-produced backlighter radiation from Cu foils driven by a short-pulse laser (153 J, 11 ps). The ablation front interferograms were processed in combination with a set of reference images obtained ex situ using phase-stepping. We managed to obtain attenuation and phase-shift images of a laser-irradiated foil for electron densities above 1e22 cm−3. These results showcase the capabilities of Talbot–Lau X-ray diagnostic methods to diagnose HED laser-generated plasmas through high-resolution imaging.The work has been supported by Research Grant No. PID2019-108764RB-I00 from the Spanish Min istry of Science and Innovatio

    Hydrodynamic instabilities in a highly radiative environment

    Get PDF
    In this paper, we present the effects of a radiative shock (RS) on the morphology of jet-like objects subjected to hydrodynamic instabilities. To this end, we used an experimental platform developed to create RSs on high energy laser facilities such as LULI2000 and GEKKO XII. Here, we employed modulated targets to initiate Richtmyer–Meshkov and Rayleigh–Taylor instability (RTI) growth in the presence of an RS. The RS is obtained by generating a strong shock in a dense pusher that expands into a low-density xenon gas. With our design, only a limited RTI growth occurs in the absence of radiative effects. A strongly radiative shock has opposite effects on RTI growth. While its deceleration enhances the instability growth, the produced radiations tend to stabilize the interfaces. Our indirect experimental observations suggest a lower instability growth despite the interface deceleration. In addition, the jets, produced during the experiment, are relevant to astrophysical structures such as Herbig–Haro objects or other radiatively cooling jets

    Current advances on Talbot–Lau x-ray imaging diagnostics for high energy density experiments (invited)

    Get PDF
    Producción CientíficaTalbot–Lau x-ray interferometry is a refraction-based diagnostic that can map electron density gradients through phase-contrast methods. The Talbot–Lau x-ray deflectometry (TXD) diagnostics have been deployed in several high energy density experiments. To improve diagnostic performance, a monochromatic TXD was implemented on the Multi-Tera Watt (MTW) laser using 8 keV multilayer mirrors (Δθ/θ = 4.5%-5.6%). Copper foil and wire targets were irradiated at 1014–1015 W/cm2. Laser pulse length (∼10 to 80 ps) and backlighter target configurations were explored in the context of Moiré fringe contrast and spatial resolution. Foil and wire targets delivered increased contrast <30%. The best spatial resolution (<6 μm) was measured for foils irradiated 80° from the surface. Further TXD diagnostic capability enhancement was achieved through the development of advanced data postprocessing tools. The Talbot Interferometry Analysis (TIA) code enabled x-ray refraction measurements from the MTW monochromatic TXD. Additionally, phase, attenuation, and dark-field maps of an ablating x-pinch load were retrieved through TXD. The images show a dense wire core of ∼60 μm diameter surrounded by low-density material of ∼40 μm thickness with an outer diameter ratio of ∼2.3. Attenuation at 8 keV was measured at ∼20% for the dense core and ∼10% for the low-density material. Instrumental and experimental limitations for monochromatic TXD diagnostics are presented. Enhanced postprocessing capabilities enabled by TIA are demonstrated in the context of high-intensity laser and pulsed power experimental data analysis. Significant advances in TXD diagnostic capabilities are presented. These results inform future diagnostic technique upgrades that will improve the accuracy of plasma characterization through TXD

    Experimental characterization of hot-electron emission and shock dynamics in the context of the shock ignition approach to inertial confinement fusion

    Get PDF
    We report on planar target experiments conducted on the OMEGA-EP laser facility performed in the context of the shock ignition (SI) approach to inertial confinement fusion. The experiment aimed at characterizing the propagation of strong shock in matter and the generation of hot electrons (HEs), with laser parameters relevant to SI (1-ns UV laser beams with I ∼1016 W/cm2). Time-resolved radiographs of the propagating shock front were performed in order to study the hydrodynamic evolution. The hot-electron source was characterized in terms of Maxwellian temperature, Th, and laser to hot-electron energy conversion efficiency η using data from different X-ray spectrometers. The post-processing of these data gives a range of the possible values for Th and η [i.e., T h [keV] a (20, 50) and η a (2%, 13%)]. These values are used as input in hydrodynamic simulations to reproduce the results obtained in radiographs, thus constraining the range for the HE measurements. According to this procedure, we found that the laser converts ∼10% ± 4% of energy into hot electrons with Th = 27 ± 8 keV. The paper shows how the coupling of different diagnostics and numerical tools is required to sufficiently constrain the problem, solving the large ambiguity coming from the post-processing of spectrometers data. The effect of the hot electrons on the shock dynamics is then discussed, showing an increase in the pressure around the shock front. The low temperature found in this experiment without pre-compression laser pulses could be advantageous for the SI scheme, but the high conversion efficiency may lead to an increase in the shell adiabat, with detrimental effects on the implosion

    Shock Ignition Laser-Plasma Interactions in Ignition-Scale Plasmas

    Get PDF
    We use a subignition scale laser, the 30 kJ Omega, and a novel shallow-cone target to study laser-plasma interactions at the ablation-plasma density scale lengths and laser intensities anticipated for direct drive shock-ignition implosions at National Ignition Facility scale. Our results show that, under these conditions, the dominant instability is convective stimulated Raman scatter with experimental evidence of two plasmon decay (TPD) only when the density scale length is reduced. Particle-in-cell simulations indicate this is due to TPD being shifted to lower densities, removing the experimental back-scatter signature and reducing the hot-electron temperature. The experimental laser energy-coupling to hot electrons was found to be 1%-2.5%, with electron temperatures between 35 and 45 keV. Radiation-hydrodynamics simulations employing these hot-electron characteristics indicate that they should not preheat the fuel in MJ-scale shock ignition experiments

    Strategies to reduce medication errors with reference to older adults

    Get PDF
    Background  In Australia, around 59% of the general population uses prescription medication with this number increasing to about 86% in those aged 65 and over and 83% of the population over 85 using two or more medications simultaneously. A recent report suggests that between 2% and 3% of all hospital admissions in Australia may be medication related with older Australians at higher risk because of higher levels of medicine intake and increased likelihood of being admitted to hospital. The most common medication errors encountered in hospitals in Australia are prescription/medication ordering errors, dispensing, administration and medication recording errors. Contributing factors to these errors have largely not been reported in the hospital environment. In the community, inappropriate drugs, prescribing errors, administration errors, and inappropriate dose errors are most common. Objectives  To present the best available evidence for strategies to prevent or reduce the incidence of medication errors associated with the prescribing, dispensing and administration of medicines in the older persons in the acute, subacute and residential care settings, with specific attention to persons aged 65 years and over. Search strategy  Bibliographic databases PubMed, Embase, Current contents, The Cochrane Library and others were searched from 1986 to present along with existing health technology websites. The reference lists of included studies and reviews were searched for any additional literature. Selection criteria  Systematic reviews, randomised controlled trials and other research methods such as non-randomised controlled trials, longitudinal studies, cohort or case-control studies, or descriptive studies that evaluate strategies to identify and manage medication incidents. Those people who are involved in the prescribing, dispensing or administering of medication to the older persons (aged 65 years and older) in the acute, subacute or residential care settings were included. Where these studies were limited, evidence available on the general patient population was used. Data collection and analysis  Study design and quality were tabulated and relative risks, odds ratios, mean differences and associated 95% confidence intervals were calculated from individual comparative studies containing count data where possible. All other data were presented in a narrative summary. Results  Strategies that have some evidence for reducing medication incidents are: •  computerised physician ordering entry systems combined with clinical decision support systems; •  individual medication supply systems when compared with other dispensing systems such as ward stock approaches; •  use of clinical pharmacists in the inpatient setting; •  checking of medication orders by two nurses before dispensing medication; •  a Medication Administration Review and Safety committee; and •  providing bedside glucose monitors and educating nurses on importance of timely insulin administration. In general, the evidence for the effectiveness of intervention strategies to reduce the incidence of medication errors is weak and high-quality controlled trials are needed in all areas of medication prescription and delivery
    corecore