109 research outputs found

    Theoretical study of resonant x-ray emission spectroscopy of Mn films on Ag

    Full text link
    We report a theoretical study on resonant x-ray emission spectra (RXES) in the whole energy region of the Mn L2,3L_{2,3} white lines for three prototypical Mn/Ag(001) systems: (i) a Mn impurity in Ag, (ii) an adsorbed Mn monolayer on Ag, and (iii) a thick Mn film. The calculated RXES spectra depend strongly on the excitation energy. At L3L_3 excitation, the spectra of all three systems are dominated by the elastic peak. For excitation energies around L2L_2, and between L3L_3 and L2L_2, however, most of the spectral weight comes from inelastic x-ray scattering. The line shape of these inelastic ``satellite'' structures changes considerably between the three considered Mn/Ag systems, a fact that may be attributed to changes in the bonding nature of the Mn-dd orbitals. The system-dependence of the RXES spectrum is thus found to be much stronger than that of the corresponding absorption spectrum. Our results suggest that RXES in the Mn L2,3L_{2,3} region may be used as a sensitive probe of the local environment of Mn atoms.Comment: 9 pages, 11 figure

    Electronic structure investigation of CoO by means of soft X-ray scattering

    Full text link
    The electronic structure of CoO is studied by resonant inelastic soft X-ray scattering spectroscopy using photon energies across the Co 2p absorption edges. The different spectral contributions from the energy-loss structures are identified as Raman scattering due to d-d and charge-transfer excitations. For excitation energies close to the L3 resonance, the spectral features are dominated by quartet-quartet and quartet-doublet transitions of the 3d7 configuration. At excitation energies corresponding to the satellites in the Co 2p X-ray absorption spectrum of CoO, the emission features are instead dominated by charge-transfer transitions to the 3d8L-1 final state. The spectra are interpreted and discussed with the support of simulations within the single impurity Anderson model with full multiplet effects which are found to yield consistent spectral functions to the experimental data.Comment: 8 pages, 2 figures, 2 tables, http://link.aps.org/doi/10.1103/PhysRevB.65.20510

    Large magnetic circular dichroism in resonant inelastic x-ray scattering at the Mn L-edge of Mn-Zn ferrite

    Full text link
    We report resonant inelastic x-ray scattering (RIXS) excited by circularly polarized x-rays on Mn-Zn ferrite at the Mn L2,3-resonances. We demonstrate that crystal field excitations, as expected for localized systems, dominate the RIXS spectra and thus their dichroic asymmetry cannot be interpreted in terms of spin-resolved partial density of states, which has been the standard approach for RIXS dichroism. We observe large dichroic RIXS at the L2-resonance which we attribute to the absence of metallic core hole screening in the insulating Mn-ferrite. On the other hand, reduced L3-RIXS dichroism is interpreted as an effect of longer scattering time that enables spin-lattice core hole relaxation via magnons and phonons occurring on a femtosecond time scale.Comment: 7 pages, 2 figures, http://link.aps.org/doi/10.1103/PhysRevB.74.17240

    Insights into the Electronic Structure of a U(IV) Amido and U(V) Imido Complex

    Get PDF
    Reaction of the N-heterocylic carbene ligand i^{i}PrIm (L1^{1}) and lithium bis(trimethylsilyl)amide (TMSA) as a base with UCl4_{4} resulted in U(IV) and U(V) complexes. Uranium\u27s +V oxidation state in (HL1^{1})2_{2}[U(V)(TMSI)Cl5_{5}] (TMSI=trimethylsilylimido) (2) was confirmed by HERFD-XANES measurements. Solid state characterization by SC-XRD and geometry optimisation of [U(IV)(L1^{1})2_{2}(TMSA)Cl3_{3}] (1) indicated a silylamido ligand mediated inverse trans influence (ITI). The ITI was examined regarding different metal oxidation states and was compared to transition metal analogues by theoretical calculations

    The electronic structure of polyaniline and doped phases studied by soft X-ray absorption and emission spectroscopies

    Full text link
    The electronic structure of the conjugated polymer, polyaniline, has been studied by resonant and nonresonant X-ray emission spectroscopy using synchrotron radiation for the excitation. The measurements were made on polyaniline and a few doped (protonated) phases for both the carbon and nitrogen contents. The resonant X-ray emission spectra show depletion of the {\pi} electron bands due to the selective excitation which enhances the effect of symmetry selection rules. The valence band structures in the X-ray emission spectra attributed to the {\pi} bands show unambiguous changes of the electronic structure upon protonation. By comparing to X-ray absorption measurements, the chemical bonding and electronic configuration is characterized.Comment: 8 pages, 8 pictures, http://jcp.aip.org/resource/1/jcpsa6/v111/i10/p4756_s

    Resonant soft X-ray Raman scattering of NiO

    Full text link
    Resonant soft X-ray Raman scattering measurements on NiO have been made at photon energies across the Ni 2p absorption edges. The details of the spectral features are identified as Raman scattering due to d-d and charge-transfer excitations. The spectra are interpreted within the single impurity Anderson model, including multiplets, crystal-field and charge-transfer effects. At threshold excitation, the spectral features consists of triplet-triplet and triplet-singlet transitions of the 3d8 configuration. For excitation energies corresponding to the charge-transfer region in the Ni 2p X-ray absorption spectrum of NiO, the emission spectra are instead dominated by charge-transfer transitions to the 3d9L-1 final state. Comparisons of the final states with other spectroscopical techniques are also made.Comment: 9 pages, 2 figures, 2 tables, http://iopscience.iop.org/0953-8984/14/13/32

    Momentum Dependence of Resonant Inelastic X-Ray Scattering Spectrum in Insulating Cuprates

    Full text link
    The resonant inelastic x-ray scattering spectrum in insulating cuprates is examined by using the exact diagonalization technique on small clusters in the two-dimensional Hubbard model with second and third neighbor hopping terms. When the incident photon energy is tuned near the Cu K absorption edges, we find that the features of the unoccupied upper Hubbard band can be extracted from the spectrum through an anisotropic momentum dependence. They provide an opportunity for the understanding of the different behavior of hole- and electron-doped superconductors.Comment: 4 pages with 4 figures, to be published in PR
    • …
    corecore