319 research outputs found

    Reassessing the temporal evolution of orchids with new fossils and a Bayesian relaxed clock, with implications for the diversification of the rare South American genus Hoffmannseggella (Orchidaceae: Epidendroideae)

    Get PDF
    BACKGROUND: The temporal origin and diversification of orchids (family Orchidaceae) has been subject to intense debate in the last decade. The description of the first reliable fossil in 2007 enabled a direct calibration of the orchid phylogeny, but little attention has been paid to the potential influence of dating methodology in obtaining reliable age estimates. Moreover, two new orchid fossils described in 2009 have not yet been incorporated in a molecular dating analysis. Here we compare the ages of major orchid clades estimated under two widely used methods, a Bayesian relaxed clock implemented in BEAST and Penalized Likelihood implemented in r8s. We then perform a new family-level analysis by integrating all 3 available fossils and using BEAST. To evaluate how the newly estimated ages may influence the evolutionary interpretation of a species-level phylogeny, we assess divergence times for the South American genus Hoffmannseggella (subfam. Epidendroideae), for which we present an almost complete phylogeny (40 out of 41 species sampled). RESULTS: Our results provide additional support that all extant orchids shared a most recent common ancestor in the Late Cretaceous (approximately 77 million years ago, Ma). However, we estimate the crown age of the five orchid subfamilies to be generally (approximately1-8 Ma) younger than previously calculated under the Penalized Likelihood algorithm and using a single internal fossil calibration. The crown age of Hoffmannseggella is estimated here at approximately 11 Ma, some 3 Ma more recently than estimated under Penalized Likelihood. CONCLUSIONS: Contrary to recent suggestions that orchid diversification began in a period of global warming, our results place the onset of diversification of the largest orchid subfamilies (Orchidoideae and Epidendroideae) in a period of global cooling subsequent to the Early Eocene Climatic Optimum. The diversification of Hoffmannseggella appears even more correlated to late Tertiary climatic fluctuations than previously suggested. With the incorporation of new fossils in the orchid phylogeny and the use of a method that is arguably more adequate given the present data, our results represent the most up-to-date estimate of divergence times in orchids

    Absorption spectrum of a weakly n-doped semiconductor quantum well

    Full text link
    We calculate, as a function of temperature and conduction band electron density, the optical absorption of a weakly n-doped, idealized semiconductor quantum well. In particular, we focus on the absorption band due to the formation of a charged exciton. We conceptualize the charged exciton as an itinerant excitation intimately linked to the dynamical response of itinerant conduction band electrons to the appearance of the photo-generated valence band hole. Numerical results for the absorption in the vicinity of the exciton line are presented and the spectral weights associated with, respectively, the charged exciton band and the exciton line are analyzed in detail. We find, in qualitative agreement with experimental data, that the spectral weight of the charged exciton grows with increasing conduction band electron density and/or decreasing temperature at the expense of the exciton.Comment: 5 pages, 4 figure

    Mechanically Adaptive Mixed Ionic-Electronic Conductors Based on a Polar Polythiophene Reinforced with Cellulose Nanofibrils

    Get PDF
    Conjugated polymers with oligoether side chains are promising mixed ionic-electronic conductors, but they tend to feature a low glass transition temperature and hence a low elastic modulus, which prevents their use if mechanical robust materials are required. Carboxymethylated cellulose nanofibrils (CNF) are found to be a suitable reinforcing agent for a soft polythiophene with tetraethylene glycol side chains. Dry nanocomposites feature a Young’s modulus of more than 400 MPa, which reversibly decreases to 10 MPa or less upon passive swelling through water uptake. The presence of CNF results in a slight decrease in electronic mobility but enhances the ionic mobility and volumetric capacitance, with the latter increasing from 164 to 197 F cm-3 upon the addition of 20 vol % CNF. Overall, organic electrochemical transistors (OECTs) feature a higher switching speed and a transconductance that is independent of the CNF content up to at least 20 vol % CNF. Hence, CNF-reinforced conjugated polymers with oligoether side chains facilitate the design of mechanically adaptive mixed ionic-electronic conductors for wearable electronics and bioelectronics

    The skeletal phenotype of chondroadherin deficient mice

    Get PDF
    Chondroadherin, a leucine rich repeat extracellular matrix protein with functions in cell to matrix interactions, binds cells via their a2b1 integrin as well as via cell surface proteoglycans, providing for different sets of signals to the cell. Additionally, the protein acts as an anchor to the matrix by binding tightly to collagens type I and II as well as type VI. We generated mice with inactivated chondroadherin gene to provide integrated studies of the role of the protein. The null mice presented distinct phenotypes with affected cartilage as well as bone. At 3–6 weeks of age the epiphyseal growth plate was widened most pronounced in the proliferative zone. The proteome of the femoral head articular cartilage at 4 months of age showed some distinct differences, with increased deposition of cartilage intermediate layer protein 1 and fibronectin in the chondroadherin deficient mice, more pronounced in the female. Other proteins show decreased levels in the deficient mice, particularly pronounced for matrilin-1, thrombospondin-1 and notably the members of the a1-antitrypsin family of proteinase inhibitors as well as for a member of the bone morphogenetic protein growth factor family. Thus, cartilage homeostasis is distinctly altered. The bone phenotype was expressed in several ways. The number of bone sialoprotein mRNA expressing cells in the proximal tibial metaphysic was decreased and the osteoid surface was increased possibly indicating a change in mineral metabolism. Micro-CT revealed lower cortical thickness and increased structure model index, i.e. the amount of plates and rods composing the bone trabeculas. The structural changes were paralleled by loss of function, where the null mice showed lower femoral neck failure load and tibial strength during mechanical testing at 4 months of age. The skeletal phenotype points at a role for chondroadherin in both bone and cartilage homeostasis, however, without leading to altered longitudinal growth

    Pre- and post-transplant minimal residual disease predicts relapse occurrence in children with acute lymphoblastic leukaemia

    Get PDF
    Relapse remains the leading cause of treatment failure in children with acute lymphoblastic leukaemia (ALL) undergoing allogeneic haematopoietic stem cell transplantation (HSCT). We retrospectively investigated the prognostic role of minimal residual disease (MRD) before and after HSCT in 119 children transplanted in complete remission (CR). MRD was measured by polymerase chain reaction in bone marrow samples collected pre-HSCT and during the first and third trimesters after HSCT (post-HSCT1 and post-HSCT3). The overall event-free survival (EFS) was 50%. The cumulative incidence of relapse and non-relapse mortality was 41% and 9%. Any degree of detectable pre-HSCT MRD was associated with poor outcome: EFS was 39% and 18% in patients with MRD positivity <1 Ă— 10−3 and ≄1 Ă— 10−3, respectively, versus 73% in MRD-negative patients (P < 0·001). This effect was maintained in different disease remissions, but low-level MRD had a very strong negative impact only in patients transplanted in second or further CR. Also, MRD after HSCT enabled patients to be stratified, with increasing MRD between post-HSCT1 and post-HSCT3 clearly defining cohorts with a different outcome. MRD is an important prognostic factor both before and after transplantation. Given that MRD persistence after HSCT is associated with dismal outcome, these patients could benefit from early discontinuation of immunosuppression, or pre-emptive immuno-therapy

    Binding Energy of Charged Excitons in ZnSe-based Quantum Wells

    Full text link
    Excitons and charged excitons (trions) are investigated in ZnSe-based quantum well structures with (Zn,Be,Mg)Se and (Zn,Mg)(S,Se) barriers by means of magneto-optical spectroscopy. Binding energies of negatively () and positively (X+) charged excitons are measured as functions of quantum well width, free carrier density and in external magnetic fields up to 47 T. The binding energy of shows a strong increase from 1.4 to 8.9 meV with decreasing quantum well width from 190 to 29 A. The binding energies of X+ are about 25% smaller than the binding energy in the same structures. The magnetic field behavior of and X+ binding energies differ qualitatively. With growing magnetic field strength, increases its binding energy by 35-150%, while for X+ it decreases by 25%. Zeeman spin splittings and oscillator strengths of excitons and trions are measured and discussed

    Campi Flegrei active seismic experiments waveforms compilation

    Get PDF
    A new experiment called SERAPIS (SEismic Reflection/Refraction Acquisition Project for Imaging complex volcanic Structures) has been planned and carried out, based on off-shore seismic energization and data acquisition on land and on sea-bottom. The experiment was performed in September, 2001 during which the vessel NADIR of IFREMER (equipped with 12, 16-liters airgun) produced more than 5000 air gun shots recorded at a sea-bottom seismograph array of 72 OBS and 62 stations installed on-land. Active seismic refraction DSS (Deep Seismic Soundings) acquired during the surveys conducted in 1980 and 1985 were recovered jointly with seismic data acquired in the Campi Flegrei area in the framework of the MareVes97 (an experiment devoted to the definition of the structure of the Somma-Vesuvio complex) offshore survey. The data set acquired during the SERAPIS experiment has been successfully used to infer 3D images of the volcanic structures of Campi Flegrei and Neapolitan bay. Active seismic waveforms and related P-picks (more than 90000 data) from the SERAPIS experiment are also available in the project data server

    Cardiac fibrosis can be attenuated by blocking the activity of transglutaminase 2 using a selective small-molecule inhibitor

    Get PDF
    Cardiac fibrosis is implicit in all forms of heart disease but there are no effective treatments. In this report, we investigate the role of the multi-functional enzyme Transglutaminase 2 (TG2) in cardiac fibrosis and assess its potential as a therapeutic target. Here we describe the use a highly selective TG2 small-molecule inhibitor to test the efficacy of TG2 inhibition as an anti-fibrotic therapy for heart failure employing two different in vivo models of cardiac fibrosis: Progressively induced interstitial cardiac fibrosis by pressure overload using angiotensin II infusion: Acutely induced focal cardiac fibrosis through myocardial infarction by ligation of the left anterior descending coronary artery (AMI model). In the AMI model, in vivo MRI showed that the TG2 inhibitor 1–155 significantly reduced infarct size by over 50% and reduced post-infarct remodelling at 20 days post insult. In both models, Sirius red staining for collagen deposition and levels of the TG2-mediated protein crosslink Δ(Îł-glutamyl)lysine were significantly reduced. No cardiac rupture or obvious signs of toxicity were observed. To provide a molecular mechanism for TG2 involvement in cardiac fibrosis, we show that both TGFÎČ1-induced transition of cardiofibroblasts into myofibroblast-like cells and TGFÎČ1- induced EndMT, together with matrix deposition, can be attenuated by the TG2 selective inhibitor 1–155, suggesting a new role for TG2 in regulating TGFÎČ1 signalling in addition to its role in latent TGFÎČ1 activation. In conclusion, TG2 has a role in cardiac fibrosis through activation of myofibroblasts and matrix deposition. TG2 inhibition using a selective small-molecule inhibitor can attenuate cardiac fibrosis
    • 

    corecore