73 research outputs found

    Leptogenesis in SO(10) models with a left-right symmetric seesaw mechanism

    Full text link
    We study leptogenesis in supersymmetric SO(10) models with a left-right symmetric seesaw mechanism, including flavour effects and the contribution of the next-to-lightest right-handed neutrino. Assuming M_D = M_u and hierarchical light neutrino masses, we find that successful leptogenesis is possible for 4 out of the 8 right-handed neutrino mass spectra that are compatible with the observed neutrino data. An accurate description of charged fermion masses appears to be an important ingredient in the analysis.Comment: Submitted for the SUSY07 proceedings, 4 pages, 9 figure

    Synthesis and characterisation of a novel poly(amidoamine)s for use as a potential protein delivery system

    Get PDF

    Update on Fermion Mass Models with an Anomalous Horizontal U(1) Symmetry

    Full text link
    We reconsider models of fermion masses and mixings based on a gauge anomalous horizontal U(1) symmetry. In the simplest model with a single flavon field and horizontal charges of the same sign for all Standard Model fields, only very few charge assignements are allowed when all experimental data, including neutrino oscillation data, is taken into account. We show that a precise description of the observed fermion masses and mixing angles can easily be obtained by generating sets of the order one parameters left unconstrained by the U(1) symmetry. The corresponding Yukawa matrices show several interesting features which may be important for flavour changing neutral currents and CP violation effects in supersymmetric models.Comment: 23 pages, 8 figure

    Diffractive SUSY particle production at the LHC

    Get PDF
    We give detailed predictions for diffractive SUSY Higgs boson and top squark associated productions at the LHC via the exclusive double pomeron exchange mechanism. We study how the SUSY Higgs cross section and the signal over background ratio are enhanced as a function of tangent beta in different regimes. The prospects are particularly promising in the ``anti-decoupling'' regime, which we study in detail. We also give the prospects for a precise measurement of the top squark mass using the threshold scan of central diffractive associated top squark events at the LHC.Comment: 14 pages, 6 fig

    Charged lepton contributions to the solar neutrino mixing and theta_13

    Full text link
    A charged lepton contribution to the solar neutrino mixing induces a contribution to theta_13, barring cancellations/correlations, which is independent of the model building options in the neutrino sector. We illustrate two robust arguments for that contribution to be within the expected sensitivity of high intensity neutrino beam experiments. We find that the case in which the neutrino sector gives rise to a maximal solar angle (the natural situation if the hierarchy is inverse) leads to a theta_13 close to or exceeding the experimental bound depending on the precise values of theta_12, theta_23, an unknown phase and possible additional contributions. We finally discuss the possibility that the solar angle originates predominantly in the charged lepton sector. We find that the construction of a model of this sort is more complicated. We comment on a recent example of natural model of this type.Comment: 10 pages, 1 figur

    A New Parametrization of the Seesaw Mechanism and Applications in Supersymmetric Models

    Full text link
    We present a new parametrization of the minimal seesaw model, expressing the heavy-singlet neutrino Dirac Yukawa couplings (Yν)ij(Y_\nu)_{ij} and Majorana masses MNiM_{N_i} in terms of effective light-neutrino observables and an auxiliary Hermitian matrix H.H. In the minimal supersymmetric version of the seesaw model, the latter can be related directly to other low-energy observables, including processes that violate charged lepton flavour and CP. This parametrization enables one to respect the stringent constraints on muon-number violation while studying the possible ranges for other observables by scanning over the allowed parameter space of the model. Conversely, if any of the lepton-flavour-violating process is observed, this measurement can be used directly to constrain (Yν)ij(Y_\nu)_{ij} and MNi.M_{N_i}. As applications, we study flavour-violating τ\tau decays and the electric dipole moments of leptons in the minimal supersymmetric seesaw model.Comment: Important references adde

    Fair scans of the seesaw. Consequences for predictions on LFV processes

    Get PDF
    Usual analyses based on scans of the seesaw parameter-space can be biassed since they do not cover in a fair way the complete parameter-space. More precisely, we show that in the common "R-parametrization", many acceptable R-matrices, compatible with the perturbativity of Yukawa couplings, are normally disregarded from the beginning, which produces biasses in the results. We give a straightforward procedure to scan the space of complex R-matrices in a complete way, giving a very simple rule to incorporate the perturbativity requirement as a condition for the entries of the R-matrix, something not considered before. As a relevant application of this, we show that the extended believe that BR(mu --> e, gamma) in supersymmetric seesaw models depends strongly on the value of theta_13 is an "optical effect" produced by such biassed scans, and does not hold after a careful analytical and numerical study. When the complete scan is done, BR(mu --> e, gamma) gets very insensitive to theta_13. Moreover, the values of the branching ratio are typically larger than those quoted in the literature, due to the large number of acceptable points in the parameter-space which were not considered before. Including (unflavoured) leptogenesis does not introduce any further dependence on theta_13, although decreases the typical value of BR(mu --> e, gamma).Comment: 22 pages, 5 figure

    Higgs as a pseudo-Goldstone boson, the mu problem and gauge-mediated supersymmetry breaking

    Full text link
    We study the interplay between the spontaneous breaking of a global symmetry of the Higgs sector and gauge-mediated supersymmetry breaking, in the framework of a supersymmetric model with global SU(3) symmetry. In addition to solving the supersymmetric flavour problem and alleviating the little hierarchy problem, this scenario automatically triggers the breaking of the global symmetry and provides an elegant solution to the mu/Bmu problem of gauge mediation. We study in detail the processes of global symmetry and electroweak symmetry breaking, including the contributions of the top/stop and gauge-Higgs sectors to the one-loop effective potential of the pseudo-Goldstone Higgs boson. While the joint effect of supersymmetry and of the global symmetry allows in principle the electroweak symmetry to be broken with little fine-tuning, the simplest version of the model fails to bring the Higgs mass above the LEP bound due to a suppressed tree-level quartic coupling. To cure this problem, we consider the possibility of additional SU(3)-breaking contributions to the Higgs potential, which results in a moderate fine-tuning. The model predicts a rather low messenger scale, a small tan beta value, a light Higgs boson with Standard Model-like properties, and heavy higgsinos.Comment: 19 pages, 6 figures. New section 3.3 on the mu/Bmu problem, more detailed analytic computation in section 4.1, error in Fig. 5 corrected, significant redactional changes (including abstract, introduction and conclusion) in order to better emphasize the main results of the paper. Title changed in journal. Final version to appear in Eur. Phys. J.

    Neutrino mixing and large CP violation in B physics

    Full text link
    We show that in see-saw models of neutrino mass a la SUSY SO(10), the observed large mixing in atmospheric neutrinos naturally leads to large b-s transitions. If the associated new CP phase turns out to be large, this SUSY contributions can drastically affect the CP violation in some of the B decay channels yielding the beta and gamma angles of the unitarity triangle. They can even produce sizeable CP asymmetries in some decay modes which are not CP violating in the standard model context. Hence the observed large neutrino mixing makes observations of low energy SUSY effect in some CP violating decay channels potentially promising in spite of the agreement between the Standard Model and data in K and B physics so far.Comment: References adde

    Searches for Lepton Flavour Violation at a Linear Collider

    Get PDF
    We investigate the prospects for detection of lepton flavour violation in sparticle production and decays at a Linear Collider (LC), in models guided by neutrino oscillation data. We consider both slepton pair production and sleptons arising from the cascade decays of non-leptonic sparticles. We study the expected signals when lepton-flavour-violating (LFV) interactions are induced by renormalization effects in the Constrained Minimal Supersymmetric extension of the Standard Model (CMSSM), focusing on the subset of the supersymmetric parameter space that also leads to cosmologically interesting values of the relic neutralino LSP density. Emphasis is given to the complementarity between the LC, which is sensitive to mixing in both the left and right slepton sectors, and the LHC, which is sensitive primarily to mixing in the right sector. We also emphasize the complementarity between searches for rare LFV processes at the LC and in low-energy experiments.Comment: 19 pages, 10 figure
    corecore