9,320 research outputs found

    Intensity enhancement of O VI ultraviolet emission lines in solar spectra due to opacity

    Full text link
    Opacity is a property of many plasmas, and it is normally expected that if an emission line in a plasma becomes optically thick, its intensity ratio to that of another transition that remains optically thin should decrease. However, radiative transfer calculations undertaken both by ourselves and others predict that under certain conditions the intensity ratio of an optically thick to thin line can show an increase over the optically thin value, indicating an enhancement in the former. These conditions include the geometry of the emitting plasma and its orientation to the observer. A similar effect can take place between lines of differing optical depth. Previous observational studies have focused on stellar point sources, and here we investigate the spatially-resolved solar atmosphere using measurements of the I(1032 A)/I(1038 A) intensity ratio of O VI in several regions obtained with the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) instrument on board the Solar and Heliospheric Observatory (SoHO) satellite. We find several I(1032 A)/I(1038 A) ratios observed on the disk to be significantly larger than the optically thin value of 2.0, providing the first detection (to our knowledge) of intensity enhancement in the ratio arising from opacity effects in the solar atmosphere. Agreement between observation and theory is excellent, and confirms that the O VI emission originates from a slab-like geometry in the solar atmosphere, rather than from cylindrical structures.Comment: 17 pages, 4 figures, ApJ Letters, in pres

    High-velocity feature of the class I methanol maser in G309.38-0.13

    Full text link
    The Australia Telescope Compact Array (ATCA) has been used to map class I methanol masers at 36 and 44 GHz in G309.38-0.13. Maser spots are found at nine locations in an area of 50''x30'', with both transitions reliably detected at only two locations. The brightest spot is associated with shocked gas traced by 4.5 micron emission. The data allowed us to make a serendipitous discovery of a high-velocity 36-GHz spectral feature, which is blue-shifted by about 30 km/s from the peak velocity at this frequency, but spatially located close to (within a few arcseconds of) the brightest maser spot. We interpret this as indicating an outflow parallel to the line of sight. Such a high velocity spread of maser features, which has not been previously reported in the class I methanol masers associated with a single molecular cloud, suggests that the outflow most likely interacts with a moving parcel of gas.Comment: 6 pages, 2 figures, accepted by MNRAS Letter

    United Kingdom: Citizenship education in the United Kingdom: comparing England, Northern Ireland, Scotland and Wales

    Get PDF
    Purpose: In this country case study the authors undertake a comparative analysis of citizenship education across the four nations of the UK. The curriculum and contexts in England, Scotland, Wales and Northern Ireland are first described. Then the article considers how each national example engages with fundamental expectations of citizenship education, specifically in relation to questions of citizenship status and the relationship between citizens and the state; political identity; and active citizenship processes. Approach: Drawing on the authors’ collective experience and insights into policy and practice in each nation, we started with a ‘generative conversation’ to identify key issues for inclusion in this case study. Findings: The article unearths a variety of constraints and problems, and situates these in a broader policyscape in which policy accretion and policy approximation generate a permissive culture, which has undermined the promise of citizenship education as an entitlement for all young people

    Study of a Large NaI(Tl) Crystal

    Full text link
    Using a narrow band positron beam, the response of a large high-resolution NaI(Tl) crystal to an incident positron beam was measured. It was found that nuclear interactions cause the appearance of additional peaks in the low energy tail of the deposited energy spectrum

    New class I methanol masers

    Full text link
    We review properties of all known collisionally pumped (class I) methanol maser series based on observations with the Australia Telescope Compact Array (ATCA) and the Mopra radio telescope. Masers at 36, 84, 44 and 95 GHz are most widespread, while 9.9, 25, 23.4 and 104 GHz masers are much rarer, tracing the most energetic shocks. A survey of many southern masers at 36 and 44 GHz suggests that these two transitions are highly complementary. The 23.4 GHz maser is a new type of rare class I methanol maser, detected only in two high-mass star-forming regions, G357.97-0.16 and G343.12-0.06, and showing a behaviour similar to 9.9, 25 and 104 GHz masers. Interferometric positions suggest that shocks responsible for class I masers could arise from a range of phenomena, not merely an outflow scenario. For example, some masers might be caused by interaction of an expanding HII region with its surrounding molecular cloud. This has implications for evolutionary sequences incorporating class I methanol masers if they appear more than once during the evolution of the star-forming region. We also make predictions for candidate maser transitions at the ALMA frequency range.Comment: 8 pages, 2 figures, to appear in proceedings for IAUS 287: Cosmic Masers - from OH to H

    High Purity Pion Beam at TRIUMF

    Full text link
    An extension of the TRIUMF M13 low-energy pion channel designed to suppress positrons based on an energy-loss technique is described. A source of beam channel momentum calibration from the decay pi+ --> e+ nu is also described.Comment: 5 page

    Mechanical and microstructural investigations of tungsten and doped tungsten materials produced via powder injection molding

    Get PDF
    The physical properties of tungsten such as the high melting point of 3420°C, the high strength and thermal conductivity, the low thermal expansion and low erosion rate make this material attractive as a plasma facing material. However, the manufacturing of such tungsten parts by mechanical machining such as milling and turning is extremely costly and time intensive because this material is very hard and brittle. Powder Injection Molding (PIM) as special process allows the mass production of components, the joining of different materials without brazing and the creation of composite and prototype materials, and is an ideal tool for scientific investigations. This contribution describes the characterization and analyses of prototype materials produced via PIM. The investigation of the pure tungsten and oxide or carbide doped tungsten materials comprises the microstructure examination, element allocation, texture analyses, and mechanical testing via four-point bend (4-PB). Furthermore, the different materials were characterized by high heat flux (HHF) tests applying transient thermal loads at different base temperatures to address thermal shock and thermal fatigue performance. Additionally, HHF investigations provide information about the thermo-mechanical behavior to extreme steady state thermal loading and measurements of the thermal conductivity as well as oxidation tests were done. Post mortem analyses are performed quantifying and qualifying the occurring damage with respect to reference tungsten grades by metallographic and microscopical means

    Precision Measurement of the π+→e+νe Branching Ratio in the PIENU Experiment

    Get PDF
    The PIENU experiment at TRIUMF aims to measure the branching ratio of the pion decay modes Rπ=[π+→e+νe(γ)]/[π+→μ+νμ(γ)] with precision of <0.1%. Precise measurement of Rπ provides a stringent test of electron-muon universality in weak interactions. The current status of the PIENU experiment and future prospects are presented

    Improved Search for Heavy Neutrinos in the Decay πeν\pi\rightarrow e\nu

    Get PDF
    A search for massive neutrinos has been made in the decay πe+ν\pi\rightarrow e^+ \nu. No evidence was found for extra peaks in the positron energy spectrum indicative of pion decays involving massive neutrinos (πe+νh\pi\rightarrow e^+ \nu_h). Upper limits (90 \% C.L.) on the neutrino mixing matrix element Uei2|U_{ei}|^2 in the neutrino mass region 60--135 MeV/c2c^2 were set, which are %representing an order of magnitude improvement over previous results
    corecore