155 research outputs found

    Targeting Melanoma Metastasis and Immunosuppression with a New Mode of Melanoma Inhibitory Activity (MIA) Protein Inhibition

    Get PDF
    Melanoma is the most aggressive form of skin cancer, with fast progression and early dissemination mediated by the melanoma inhibitory activity (MIA) protein. Here, we discovered that dimerization of MIA is required for functional activity through mutagenesis of MIA which showed the correlation between dimerization and functional activity. We subsequently identified the dodecapeptide AR71, which prevents MIA dimerization and thereby acts as a MIA inhibitor. Two-dimensional nuclear magnetic resonance (NMR) spectroscopy demonstrated the binding of AR71 to the MIA dimerization domain, in agreement with in vitro and in vivo data revealing reduced cell migration, reduced formation of metastases and increased immune response after AR71 treatment. We believe AR71 is a lead structure for MIA inhibitors. More generally, inhibiting MIA dimerization is a novel therapeutic concept in melanoma therapy

    Wnt signalling in human breast cancer: expression of the putative Wnt inhibitor Dickkopf-3 (DKK3) is frequently suppressed by promoter hypermethylation in mammary tumours

    Get PDF
    INTRODUCTION: Expression of the putative Wnt signalling inhibitor Dickkopf-3 (DKK3) is frequently lost in human cancer tissues because of aberrant 5'-cytosine methylation within the DKK3 gene promoter. Since other Wnt signalling inhibitors have been reported to be targets of epigenetic inactivation in human breast cancer, we questioned if DKK3 expression is also epigenetically silenced during breast carcinogenesis and therefore might contribute to oncogenic Wnt signalling commonly found in this disease. METHODS: DKK3 mRNA expression and DKK3 promoter methylation were determined by RT-PCR, realtime PCR and methylation-specific PCR in breast cell lines (n = 9), normal breast tissues (n = 19) and primary breast carcinomas (n = 150), respectively. In vitro DNA demethylation was performed by incubating breast cell lines with 5-aza-2'-deoxycytidine and trichostatin A. DKK3 protein expression was analysed by immunohistochemistry in breast carcinomas (n = 16) and normal breast tissues (n = 8). Methylation data were statistically correlated with clinical patient characteristics. All statistical evaluations were performed with SPSS 14.0 software. RESULTS: DKK3 mRNA was downregulated in 71% (five of seven) of breast cancer cell lines and in 68% of primary breast carcinomas (27 of 40) compared with benign cell lines and normal breast tissues, respectively. A DNA demethylating treatment of breast cell lines resulted in strong induction of DKK3 mRNA expression. In tumourous breast tissues, DKK3 mRNA downregulation was significantly associated with DKK3 promoter methylation (p < 0.001). Of the breast carcinomas, 61% (92 of 150) revealed a methylated DKK3 promoter, whereas 39% (58 of 150) retained an unmethylated promoter. Loss of DKK3 expression in association with DKK3 promoter methylation (p = 0.001) was also confirmed at the protein level (p < 0.001). In bivariate analysis, DKK3 promoter methylation was not associated with investigated clinicopathological parameters except patient age (p = 0.007). CONCLUSIONS: DKK3 mRNA expression and consequently DKK3 protein expression become frequently downregulated during human breast cancer development due to aberrant methylation of the DKK3 promoter. Since DKK3 is thought to negatively regulate oncogenic Wnt signalling, DKK3 may be a potential tumour suppressor gene in normal breast tissue

    Conserved Expression Signatures between Medaka and Human Pigment Cell Tumors

    Get PDF
    Aberrations in gene expression are a hallmark of cancer cells. Differential tumor-specific transcript levels of single genes or whole sets of genes may be critical for the neoplastic phenotype and important for therapeutic considerations or useful as biomarkers. As an approach to filter out such relevant expression differences from the plethora of changes noted in global expression profiling studies, we searched for changes of gene expression levels that are conserved. Transcriptomes from massive parallel sequencing of different types of melanoma from medaka were generated and compared to microarray datasets from zebrafish and human melanoma. This revealed molecular conservation at various levels between fish models and human tumors providing a useful strategy for identifying expression signatures strongly associated with disease phenotypes and uncovering new melanoma molecules

    Regulated Expression of ADAMTS-12 in Human Trophoblastic Cells: A Role for ADAMTS-12 in Epithelial Cell Invasion?

    Get PDF
    Metastatic carcinoma cells exploit the same molecular machinery that allows human placental cytotrophoblasts to develop an invasive phenotype. As altered expression levels of ADAMTS (A Disintegrin And Metalloproteinase with ThromboSpondin repeats) subtypes have been associated with cancer progression, we have examined the function and regulation of members of this gene family in epithelial cell invasion using cultures of highly invasive extravillous cytotrophoblasts and the poorly invasive JEG-3 cytotrophoblast cell line as model systems. Of the multiple ADAMTS subtypes identified in first trimester human placenta and these two trophoblastic cell types, only ADAMTS-12 was preferentially expressed by extravillous cytotrophoblasts. Transforming growth factor-β1 and interleukin-1β, two cytokines that promote and restrain cytotrophoblast invasion in vitro, were also found to differentially regulate trophoblastic ADAMTS-12 mRNA levels. Loss- or gain-of-function studies confirmed that ADAMTS-12, independent of its proteolytic activity, plays a specific, non-redundant role in trophoblast invasion. Furthermore, we demonstrated that ADAMTS-12 regulated cell-extracellular matrix adhesion and invasion through a mechanism involving the αvβ3 integrin heterodimer. This study identifies a novel biological role for ADAMTS-12, and highlights the importance and complexity of its non-proteolytic domain(s) pertaining to its function

    EWS/ETS Regulates the Expression of the Dickkopf Family in Ewing Family Tumor Cells

    Get PDF
    BACKGROUND: The Dickkopf (DKK) family comprises a set of proteins that function as regulators of Wnt/beta-catenin signaling and has a crucial role in development. Recent studies have revealed the involvement of this family in tumorigenesis, however their role in tumorigenesis is still remained unclear. METHODOLOGY/PRINCIPAL FINDINGS: We found increased expression of DKK2 but decreased expression of DKK1 in Ewing family tumor (EFT) cells. We showed that EFT-specific EWS/ETS fusion proteins enhance the DKK2 promoter activity, but not DKK1 promoter activity, via ets binding sites (EBSs) in the 5' upstream region. EWS/ETS-mediated transactivation of the promoter was suppressed by the deletion and mutation of EBSs located upstream of the DKK2 gene. Interestingly, the inducible expression of EWS/ETS resulted in the strong induction of DKK2 expression and inhibition of DKK1 expression in human primary mesenchymal progenitor cells that are thought to be a candidate of cell origin of EFT. In addition, using an EFT cell line SK-ES1 cells, we also demonstrated that the expression of DKK1 and DKK2 is mutually exclusive, and the ectopic expression of DKK1, but not DKK2, resulted in the suppression of tumor growth in immuno-deficient mice. CONCLUSIONS/SIGNIFICANCE: Our results suggested that DKK2 could not functionally substitute for DKK1 tumor-suppressive effect in EFT. Given the mutually exclusive expression of DKK1 and DKK2, EWS/ETS regulates the transcription of the DKK family, and the EWS/ETS-mediated DKK2 up-regulation could affect the tumorigenicity of EFT in an indirect manner

    A Seven-Marker Signature and Clinical Outcome in Malignant Melanoma: A Large-Scale Tissue-Microarray Study with Two Independent Patient Cohorts

    Get PDF
    Current staging methods such as tumor thickness, ulceration and invasion of the sentinel node are known to be prognostic parameters in patients with malignant melanoma (MM). However, predictive molecular marker profiles for risk stratification and therapy optimization are not yet available for routine clinical assessment.; Using tissue microarrays, we retrospectively analyzed samples from 364 patients with primary MM. We investigated a panel of 70 immunohistochemical (IHC) antibodies for cell cycle, apoptosis, DNA mismatch repair, differentiation, proliferation, cell adhesion, signaling and metabolism. A marker selection procedure based on univariate Cox regression and multiple testing correction was employed to correlate the IHC expression data with the clinical follow-up (overall and recurrence-free survival). The model was thoroughly evaluated with two different cross validation experiments, a permutation test and a multivariate Cox regression analysis. In addition, the predictive power of the identified marker signature was validated on a second independent external test cohort (n?=?225). A signature of seven biomarkers (Bax, Bcl-X, PTEN, COX-2, loss of ?-Catenin, loss of MTAP, and presence of CD20 positive B-lymphocytes) was found to be an independent negative predictor for overall and recurrence-free survival in patients with MM. The seven-marker signature could also predict a high risk of disease recurrence in patients with localized primary MM stage pT1-2 (tumor thickness ?2.00 mm). In particular, three of these markers (MTAP, COX-2, Bcl-X) were shown to offer direct therapeutic implications.; The seven-marker signature might serve as a prognostic tool enabling physicians to selectively triage, at the time of diagnosis, the subset of high recurrence risk stage I-II patients for adjuvant therapy. Selective treatment of those patients that are more likely to develop distant metastatic disease could potentially lower the burden of untreatable metastatic melanoma and revolutionize the therapeutic management of MM

    The functional cancer map: A systems-level synopsis of genetic deregulation in cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cancer cells are characterized by massive dysegulation of physiological cell functions with considerable disruption of transcriptional regulation. Genome-wide transcriptome profiling can be utilized for early detection and molecular classification of cancers. Accurate discrimination of functionally different tumor types may help to guide selection of targeted therapy in translational research. Concise grouping of tumor types in cancer maps according to their molecular profile may further be helpful for the development of new therapeutic modalities or open new avenues for already established therapies.</p> <p>Methods</p> <p>Complete available human tumor data of the Stanford Microarray Database was downloaded and filtered for relevance, adequacy and reliability. A total of 649 tumor samples from more than 1400 experiments and 58 different tissues were analyzed. Next, a method to score deregulation of KEGG pathway maps in different tumor entities was established, which was then used to convert hundreds of gene expression profiles into corresponding tumor-specific pathway activity profiles. Based on the latter, we defined a measure for functional similarity between tumor entities, which yielded to phylogeny of tumors.</p> <p>Results</p> <p>We provide a comprehensive, easy-to-interpret functional cancer map that characterizes tumor types with respect to their biological and functional behavior. Consistently, multiple pathways commonly associated with tumor progression were revealed as common features in the majority of the tumors. However, several pathways previously not linked to carcinogenesis were identified in multiple cancers suggesting an essential role of these pathways in cancer biology. Among these pathways were 'ECM-receptor interaction', 'Complement and Coagulation cascades', and 'PPAR signaling pathway'.</p> <p>Conclusion</p> <p>The functional cancer map provides a systematic view on molecular similarities across different cancers by comparing tumors on the level of pathway activity. This work resulted in identification of novel superimposed functional pathways potentially linked to cancer biology. Therefore, our work may serve as a starting point for rationalizing combination of tumor therapeutics as well as for expanding the application of well-established targeted tumor therapies.</p

    PAI-1 and functional blockade of SNAI1 in breast cancer cell migration

    Get PDF
    12 pages, 5 figures.-- PMID: 19055748 [PubMed].-- et al.[Introduction]: Snail, a family of transcriptional repressors implicated in cell movement, has been correlated with tumour invasion. The Plasminogen Activation (PA) system, including urokinase plasminogen activator (uPA), its receptor and its inhibitor, plasminogen activator inhibitor type 1(PAI-1), also plays a key role in cancer invasion and metastasis, either through proteolytic degradation or by non-proteolytic modulation of cell adhesion and migration. Thus, Snail and the PA system are both over-expressed in cancer and influence this process. In this study we aimed to determine if the activity of SNAI1 (a member of the Snail family) is correlated with expression of the PA system components and how this correlation can influence tumoural cell migration.[Methods]: We compared the invasive breast cancer cell-line MDA-MB-231 expressing SNAI1 (MDA-mock) with its derived clone expressing a dominant-negative form of SNAI1 (SNAI1-DN). Expression of PA system mRNAs was analysed by cDNA microarrays and real-time quantitative RT-PCR. Wound healing assays were used to determine cell migration. PAI-1 distribution was assessed by immunostaining.[Results]: We demonstrated by both cDNA microarrays and realtime quantitative RT-PCR that the functional blockade of SNAI1 induces a significant decrease of PAI-1 and uPA transcripts. After performing an in vitro wound-healing assay, we observed that SNAI1-DN cells migrate more slowly than MDA-mock cells and in a more collective manner. The blockade of SNAI1 activity resulted in the redistribution of PAI-1 in SNAI1-DN cells decorating large lamellipodia, which are commonly found structures in these cells.[Conclusions]: In the absence of functional SNAI1, the expression of PAI-1 transcripts is decreased, although the protein is redistributed at the leading edge of migrating cells in a manner comparable with that seen in normal epithelial cells.This work was supported by the CNRS ACI Program "Complexité du vivant" (grant # 050009DR11) and by the Evry Genopole grant "Aide à l'acquisition d'équipement semi-lourd" 2007 and 2008.Peer reviewe
    corecore