46 research outputs found

    Toughening mechanisms in elastomer-modified epoxies

    Full text link
    The toughening mechanisms of elastomer-modified epoxies are examined by scanning electron microscopy, transmission electron microscopy, and optical microscopy, DGEBA epoxies toughened by various levels of several types of carboxyl terminated copolymers of butadiene-acrylonitrile (CTBN) liquid rubber are studied. The materials are deformed in uniaxial tension and in three-point bending with an edge notch. Scanning electron microscopy of fracture surfaces indicate cavitation of the rubber particles to be a major deformation mechanism. Particle-particle interaction is also found. Optical microscopy of thin sections perpendicular to the fracture surface shows that the cavitated particles generate shear bands. The toughening effect is hypothesized to be due to cavitation, which relieves the triaxial tension at the crack tip, and shear band formation, which creates a large plastic zone.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44686/1/10853_2005_Article_BF01114294.pd

    Study of fracture mechanisms of multiphase polymers using the double-notch four-point-bending method

    Full text link
    The double-notch four-point-bend technique (DN-4PB) is developed to study the fracture mechanisms of multiphase polymers. This technique is found to be effective for an unambiguous determination of the fracture mechanisms and the sequence of toughening events of polymer alloys when fracture occurs. The DN-4PB technique is also found to be especially useful for situations where the quantity of the test material is limited and the testing rate is high. The present study demonstrates the usefulness of the DN-4PB technique in a variety of polymeric systems and testing conditions. Requirements for which the DN-4PB technique becomes useful are also addressed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44722/1/10853_2004_Article_BF00354702.pd

    Failure mechanisms in alloy of polyamide 6,6/polyphenylene oxide under severe conditions

    Full text link
    Toughening mechanisms of a polyamide 6,6/polyphenylene oxide alloy containing an elastomer tested under a slow rate, an impact rate, and a low temperature have been investigated using various microscopy techniques. It is found that the toughening mechanisms of the alloy may change from crazing/shear yielding, to crack bridging/crazing, and to transparticle failure, depending on the testing conditions. Except for the low temperature high strain rate testing condition and in the plane stress region of the crack, the crazing mechanism has been observed in all the conditions we studied. When the testing rate is high, the shear yielding mechanism is suppressed; multiple crazing and particle bridging mechanisms appear to dominate.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44700/1/10853_2004_Article_BF00557130.pd

    Why Are Outcomes Different for Registry Patients Enrolled Prospectively and Retrospectively? Insights from the Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF).

    Get PDF
    Background: Retrospective and prospective observational studies are designed to reflect real-world evidence on clinical practice, but can yield conflicting results. The GARFIELD-AF Registry includes both methods of enrolment and allows analysis of differences in patient characteristics and outcomes that may result. Methods and Results: Patients with atrial fibrillation (AF) and ≄1 risk factor for stroke at diagnosis of AF were recruited either retrospectively (n = 5069) or prospectively (n = 5501) from 19 countries and then followed prospectively. The retrospectively enrolled cohort comprised patients with established AF (for a least 6, and up to 24 months before enrolment), who were identified retrospectively (and baseline and partial follow-up data were collected from the emedical records) and then followed prospectively between 0-18 months (such that the total time of follow-up was 24 months; data collection Dec-2009 and Oct-2010). In the prospectively enrolled cohort, patients with newly diagnosed AF (≀6 weeks after diagnosis) were recruited between Mar-2010 and Oct-2011 and were followed for 24 months after enrolment. Differences between the cohorts were observed in clinical characteristics, including type of AF, stroke prevention strategies, and event rates. More patients in the retrospectively identified cohort received vitamin K antagonists (62.1% vs. 53.2%) and fewer received non-vitamin K oral anticoagulants (1.8% vs . 4.2%). All-cause mortality rates per 100 person-years during the prospective follow-up (starting the first study visit up to 1 year) were significantly lower in the retrospective than prospectively identified cohort (3.04 [95% CI 2.51 to 3.67] vs . 4.05 [95% CI 3.53 to 4.63]; p = 0.016). Conclusions: Interpretations of data from registries that aim to evaluate the characteristics and outcomes of patients with AF must take account of differences in registry design and the impact of recall bias and survivorship bias that is incurred with retrospective enrolment. Clinical Trial Registration: - URL: http://www.clinicaltrials.gov . Unique identifier for GARFIELD-AF (NCT01090362)

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    Influence of particle size and particle size distribution on toughening mechanisms in rubber-modified epoxies

    Full text link
    The principal toughening mechanism of a substantially toughened, rubber-modified epoxy has again been shown to involve internal cavitation of the rubber particles and the subsequent formation of shear bands. Additional evidence supporting this sequence of events which provides a significant amount of toughness enhancement, is presented. However, in addition to this well-known mechanism, more subtle toughening mechanisms have been found in this work. Evidence for such mechanisms as crack deflection and particle bridging is shown under certain circumstances in rubber-modified epoxies. The occurrence of these toughening mechanisms appears to have a particle size dependence. Relatively large particles provide only a modest increase in fracture toughness by a particle bridging/crack deflection mechanism. In contrast, smaller particles provide a significant increase in toughness by cavitation-induced shear banding. A critical, minimum diameter for particles which act as bridging particles exists and this critical diameter appears to scale with the properties of the neat epoxy. Bimodal mixtures of epoxies containing small and large particles are also examined and no synergistic effects are observed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44701/1/10853_2005_Article_BF01184979.pd

    The toughness of epoxy-poly(butylene terephthalate) blends

    Full text link
    Blends containing 5% poly(butylene terephthalate) (PBT) in an anhydride-cured epoxy with three different PBT morphologies were studied. The three morphologies were a dispersion of spherulites, a structureless gel and a gel with spherulites. The average fracture toughnesses, K Ic , and fracture energies, G Ic , for those morphologies were 0.83, 2.3 and 1.8 MPa m 1/2 and 240, 2000 and 1150 J m −2 , respectively. These values should be compared with the values of 0.72 MPa m 1/2 and 180 J m −2 , respectively, for the cured epoxy without PBT. The elastic moduli and yield strengths in compression for all three blend morphologies remained essentially unchanged from those of the cured epoxy without PBT, namely, 2.9 GPa for the modulus and 115 MPa for the yield strength. The fracture surfaces of the cured spherulitic dispersion blends indicate the absorption of fracture energy by crack bifurcation induced by the spherulites. The fracture surfaces of the cured structureless gel blends indicate that fracture energy was absorbed by matrix and PBT plastic deformation and by spontaneous crack bifurcation. But phase transformation of the PBT and anelastic strain of the matrix below the fracture surfaces may account for most of the large fracture energy of the cured structureless gel blends.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44733/1/10853_2004_Article_BF00366876.pd

    A model for the toughness of epoxy-rubber particulate composite

    No full text

    Properties of Alumina Trihydrate Filled Epoxy Glass Laminates

    No full text
    corecore