390 research outputs found

    Challenges in identifying cancer genes by analysis of exome sequencing data.

    Get PDF
    Massively parallel sequencing has permitted an unprecedented examination of the cancer exome, leading to predictions that all genes important to cancer will soon be identified by genetic analysis of tumours. To examine this potential, here we evaluate the ability of state-of-the-art sequence analysis methods to specifically recover known cancer genes. While some cancer genes are identified by analysis of recurrence, spatial clustering or predicted impact of somatic mutations, many remain undetected due to lack of power to discriminate driver mutations from the background mutational load (13-60% recall of cancer genes impacted by somatic single-nucleotide variants, depending on the method). Cancer genes not detected by mutation recurrence also tend to be missed by all types of exome analysis. Nonetheless, these genes are implicated by other experiments such as functional genetic screens and expression profiling. These challenges are only partially addressed by increasing sample size and will likely hold even as greater numbers of tumours are analysed

    An exploration of personal benefits reported by students of a health and wellness coach training programme

    Get PDF
    This study explores the ‘personal benefits’ of training reported by graduates of a health and wellness coach training programme. In particular, we investigated reported benefits, areas of life affected by the training, and whether changes occurred in health and wellness or more broadly. Using a semi-structured interview design, we incorporated an atheoretical qualitative approach to data collection and analysis. Thematic analysis was used at a semantic level to identify the major themes. The findings indicate a blend of personal and professional benefits for the graduate. As a result of participation in the programme, graduates gained greater self-knowledge, and better connection with others. They also improved their professional optimism and noted positive changes in personal health and wellbeing. Further research is needed to see if trainees from other health and wellness coach training programmes report similar personal benefits, and to identify key training elements instrumental to generating these benefits

    Origins and composition of fine atmospheric carbonaceous aerosol in the Sierra Nevada Mountains, California

    Get PDF
    In this paper we report chemically resolved measurements of organic aerosol (OA) and related tracers during the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX) at the Blodgett Forest Research Station, California from 15 August–10 October 2007. OA contributed the majority of the mass to the fine atmospheric particles and was predominately oxygenated (OOA). The highest concentrations of OA were during sporadic wildfire influence when aged plumes were impacting the site. In situ measurements of particle phase molecular markers were dominated by secondary compounds and along with gas phase compounds could be categorized into six factors or sources: (1) aged biomass burning emissions and oxidized urban emissions, (2) oxidized urban emissions (3) oxidation products of monoterpene emissions, (4) monoterpene emissions, (5) anthropogenic emissions and (6) local methyl chavicol emissions and oxidation products. There were multiple biogenic components that contributed to OA at this site whose contributions varied diurnally, seasonally and in response to changing meteorological conditions, e.g. temperature and precipitation events. Concentrations of isoprene oxidation products were larger when temperatures were higher during the first half of the campaign (15 August–12 September) due to more substantial emissions of isoprene and enhanced photochemistry. The oxidation of methyl chavicol, an oxygenated terpene emitted by ponderosa pine trees, contributed similarly to OA throughout the campaign. In contrast, the abundances of monoterpene oxidation products in the particle phase were greater during the cooler conditions in the latter half of the campaign (13 September–10 October), even though emissions of the precursors were lower, although the mechanism is not known. OA was correlated with the anthropogenic tracers 2-propyl nitrate and carbon monoxide (CO), consistent with previous observations, while being comprised of mostly non-fossil carbon (>75%). The correlation between OA and an anthropogenic tracer does not necessarily identify the source of the carbon as being anthropogenic but instead suggests a coupling between the anthropogenic and biogenic components in the air mass that might be related to the source of the oxidant and/or the aerosol sulfate. Observations of organosulfates of isoprene and α-pinene provided evidence for the likely importance of aerosol sulfate in spite of neutralized aerosol although acidic plumes might have played a role upwind of the site. This is in contrast to laboratory studies where strongly acidic seed aerosols were needed in order to form these compounds. These compounds together represented only a minor fraction (<1%) of the total OA mass, which may be the result of the neutralized aerosol at the site or because only a small number of organosulfates were quantified. The low contribution of organosulfates to total OA suggests that other mechanisms, e.g. NO_x enhancement of oxidant levels, are likely responsible for the majority of the anthropogenic enhancement of biogenic secondary organic aerosol observed at this site

    Major components of atmospheric organic aerosol in southern California as determined by hourly measurements of source marker compounds

    Get PDF
    We report the first hourly in-situ measurements of speciated organic aerosol (OA) composition in an urban environment. Field measurements were made in southern California at the University of California–Riverside during the 2005 Study of Organic Aerosol at Riverside (SOAR), which included two separate measurement periods: a summer study (15 July–15 August) and a fall study (31 October–28 November). Hourly measurements of over 300 semivolatile and nonvolatile organic compounds were made using the thermal desorption aerosol gas chromatograph (TAG). Positive matrix factorization (PMF) was performed on a subset of these compounds to identify major components contributing to submicron (i.e., PM<sub>1</sub>) OA at the site, as measured by an aerosol mass spectrometer (AMS). PMF analysis was performed on an 11-day focus period in each season, representing average seasonal conditions during the summer and a period of urban influence during the fall. As a result of this analysis, we identify multiple types of primary and secondary OA (POA and SOA). Secondary sources contribute substantially to fine OA mass at Riverside, which commonly receives regional air masses that pass through metropolitan Los Angeles during the summer. Four individual summertime SOA components are defined, and when combined, they are estimated to contribute an average 88% of the total fine OA mass during summer afternoons according to PMF results. These sources appear to be mostly from the oxidation of anthropogenic precursor gases, with one SOA component having contributions from oxygenated biogenics. During the fall, three out of four aerosol components that contain SOA are inseparable from covarying primary emissions, and therefore we cannot estimate the fraction of total OA that is secondary in nature during the fall study. Identified primary OA components are attributed to vehicle emissions, food cooking, primary biogenics, and biomass burning aerosol. While a distinction between local and regional vehicle emissions is made, a combination of these two factors accounted for approximately 11% of observed submicron OA during both sampling periods. Food cooking operations contributed ~10% of submicron OA mass during the summer, but was not separable from SOA during the fall due to high covariance of sources. Biomass burning aerosol contributed a larger fraction of fine OA mass during the fall (~11%) than compared to summer (~7%). Primary biogenic aerosol was also identified during the summer, contributing ~1% of the OA, but not during the fall. While the contribution of both local and regional primary vehicle OA accounts for only ~11% of total OA during both seasons, gas-phase vehicle emissions likely create a substantial fraction of the observed SOA as a result of atmospheric processing

    A global transcriptional network connecting noncoding mutations to changes in tumor gene expression.

    Get PDF
    Although cancer genomes are replete with noncoding mutations, the effects of these mutations remain poorly characterized. Here we perform an integrative analysis of 930 tumor whole genomes and matched transcriptomes, identifying a network of 193 noncoding loci in which mutations disrupt target gene expression. These 'somatic eQTLs' (expression quantitative trait loci) are frequently mutated in specific cancer tissues, and the majority can be validated in an independent cohort of 3,382 tumors. Among these, we find that the effects of noncoding mutations on DAAM1, MTG2 and HYI transcription are recapitulated in multiple cancer cell lines and that increasing DAAM1 expression leads to invasive cell migration. Collectively, the noncoding loci converge on a set of core pathways, permitting a classification of tumors into pathway-based subtypes. The somatic eQTL network is disrupted in 88% of tumors, suggesting widespread impact of noncoding mutations in cancer

    Renal pericytes: regulators of medullary blood flow

    Get PDF
    Regulation of medullary blood flow (MBF) is essential in maintaining normal kidney function. Blood flow to the medulla is supplied by the descending vasa recta (DVR), which arise from the efferent arterioles of juxtamedullary glomeruli. DVR are composed of a continuous endothelium, intercalated with smooth muscle-like cells called pericytes. Pericytes have been shown to alter the diameter of isolated and in situ DVR in response to vasoactive stimuli that are transmitted via a network of autocrine and paracrine signalling pathways. Vasoactive stimuli can be released by neighbouring tubular epithelial, endothelial, red blood cells and neuronal cells in response to changes in NaCl transport and oxygen tension. The experimentally described sensitivity of pericytes to these stimuli strongly suggests their leading role in the phenomenon of MBF autoregulation. Because the debate on autoregulation of MBF fervently continues, we discuss the evidence favouring a physiological role for pericytes in the regulation of MBF and describe their potential role in tubulo-vascular cross-talk in this region of the kidney. Our review also considers current methods used to explore pericyte activity and function in the renal medulla

    Replication of LDL SWAs hits in PROSPER/PHASE as validation for future (pharmaco)genetic analyses

    Get PDF
    &lt;p&gt;&lt;b&gt;Background:&lt;/b&gt; The PHArmacogenetic study of Statins in the Elderly at risk (PHASE) is a genome wide association study in the PROspective Study of Pravastatin in the Elderly at risk for vascular disease (PROSPER) that investigates the genetic variation responsible for the individual variation in drug response to pravastatin. Statins lower LDL-cholesterol in general by 30%, however not in all subjects. Moreover, clinical response is highly variable and adverse effects occur in a minority of patients. In this report we first describe the rationale of the PROSPER/PHASE project and second show that the PROSPER/PHASE study can be used to study pharmacogenetics in the elderly.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Methods:&lt;/b&gt; The genome wide association study (GWAS) was conducted using the Illumina 660K-Quad beadchips following manufacturer's instructions. After a stringent quality control 557,192 SNPs in 5,244 subjects were available for analysis. To maximize the availability of genetic data and coverage of the genome, imputation up to 2.5 million autosomal CEPH HapMap SNPs was performed with MACH imputation software. The GWAS for LDL-cholesterol is assessed with an additive linear regression model in PROBABEL software, adjusted for age, sex, and country of origin to account for population stratification.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Results:&lt;/b&gt; Forty-two SNPs reached the GWAS significant threshold of p = 5.0e-08 in 5 genomic loci (APOE/APOC1; LDLR; FADS2/FEN1; HMGCR; PSRC1/CELSR5). The top SNP (rs445925, chromosome 19) with a p-value of p = 2.8e-30 is located within the APOC1 gene and near the APOE gene. The second top SNP (rs6511720, chromosome 19) with a p-value of p = 5.22e-15 is located within the LDLR gene. All 5 genomic loci were previously associated with LDL-cholesterol levels, no novel loci were identified. Replication in WOSCOPS and CARE confirmed our results.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Conclusion:&lt;/b&gt; With the GWAS in the PROSPER/PHASE study we confirm the previously found genetic associations with LDL-cholesterol levels. With this proof-of-principle study we show that the PROSPER/PHASE study can be used to investigate genetic associations in a similar way to population based studies. The next step of the PROSPER/PHASE study is to identify the genetic variation responsible for the variation in LDL-cholesterol lowering in response to statin treatment in collaboration with other large trials.&lt;/p&gt

    The condition-dependent transcriptional landscape of Burkholderia pseudomallei

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Burkholderia pseudomallei (Bp), the causative agent of the often-deadly infectious disease melioidosis, contains one of the largest prokaryotic genomes sequenced to date, at 7.2 Mb with two large circular chromosomes (1 and 2). To comprehensively delineate the Bp transcriptome, we integrated whole-genome tiling array expression data of Bp exposed to >80 diverse physical, chemical, and biological conditions. Our results provide direct experimental support for the strand-specific expression of 5,467 Sanger protein-coding genes, 1,041 operons, and 766 non-coding RNAs. A large proportion of these transcripts displayed condition-dependent expression, consistent with them playing functional roles. The two Bp chromosomes exhibited dramatically different transcriptional landscapes--Chr 1 genes were highly and constitutively expressed, while Chr 2 genes exhibited mosaic expression where distinct subsets were expressed in a strongly condition-dependent manner. We identified dozens of cis-regulatory motifs associated with specific condition-dependent expression programs, and used the condition compendium to elucidate key biological processes associated with two complex pathogen phenotypes--quorum sensing and in vivo infection. Our results demonstrate the utility of a Bp condition-compendium as a community resource for biological discovery. Moreover, the observation that significant portions of the Bp virulence machinery can be activated by specific in vitro cues provides insights into Bp's capacity as an "accidental pathogen", where genetic pathways used by the bacterium to survive in environmental niches may have also facilitated its ability to colonize human hosts.This work was funded by a core grant provided by the Agency for Science, Technology and Research to the Genome Institute of Singapore, and funding from the Defence Medical and Environmental Research Institute, Singapore. This work was supported in part through NIAID contract HHSN266200400035C to BWS. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Methylome-wide Analysis of Chronic HIV Infection Reveals Five-Year Increase in Biological Age and Epigenetic Targeting of HLA

    Get PDF
    HIV-infected individuals are living longer on antiretro-viral therapy, but many patients display signs that in some ways resemble premature aging. To investigate and quantify the impact of chronic HIV infection on aging, we report a global analysis of the whole-blood DNA methylomes of 137 HIV+ individuals under sustained therapy along with 44 matched HIV- individuals. First,we develop and validate epigenetic models of aging that are independent of blood cell composition. Using these models, we find that both chronic and recent HIV infection lead to an average aging advancement of 4.9 years, increasing expected mortality risk by 19%. In addition, sustained infection results in global deregulation of the methylome across \u3e80,000 CpGs and specific hypomethylation of the region encoding the human leukocyte antigen locus (HLA).We find that decreased HLA methylation is predictive of lower CD4/CD8T cell ratio, linking molecular aging, epigenetic regulation, and disease progression

    Combinatorial CRISPR-Cas9 screens for de novo mapping of genetic interactions.

    Get PDF
    We developed a systematic approach to map human genetic networks by combinatorial CRISPR-Cas9 perturbations coupled to robust analysis of growth kinetics. We targeted all pairs of 73 cancer genes with dual guide RNAs in three cell lines, comprising 141,912 tests of interaction. Numerous therapeutically relevant interactions were identified, and these patterns replicated with combinatorial drugs at 75% precision. From these results, we anticipate that cellular context will be critical to synthetic-lethal therapies
    corecore