12 research outputs found

    Recessive mutations in the INS gene result in neonatal diabetes through reduced insulin biosynthesis

    Get PDF
    Heterozygous coding mutations in the INS gene that encodes preproinsulin were recently shown to be an important cause of permanent neonatal diabetes. These dominantly acting mutations prevent normal folding of proinsulin, which leads to beta-cell death through endoplasmic reticulum stress and apoptosis. We now report 10 different recessive INS mutations in 15 probands with neonatal diabetes. Functional studies showed that recessive mutations resulted in diabetes because of decreased insulin biosynthesis through distinct mechanisms, including gene deletion, lack of the translation initiation signal, and altered mRNA stability because of the disruption of a polyadenylation signal. A subset of recessive mutations caused abnormal INS transcription, including the deletion of the C1 and E1 cis regulatory elements, or three different single base-pair substitutions in a CC dinucleotide sequence located between E1 and A1 elements. In keeping with an earlier and more severe beta-cell defect, patients with recessive INS mutations had a lower birth weight (-3.2 SD score vs. -2.0 SD score) and were diagnosed earlier (median 1 week vs. 10 weeks) compared to those with dominant INS mutations. Mutations in the insulin gene can therefore result in neonatal diabetes as a result of two contrasting pathogenic mechanisms. Moreover, the recessively inherited mutations provide a genetic demonstration of the essential role of multiple sequence elements that regulate the biosynthesis of insulin in man

    Glucose evaluation trial for remission (GETREM) in type 1 diabetes: a European multicentre study

    No full text
    Objective: Strict metabolic control during the 1st year of type I diabetes is thought to be a key factor fur achieving clinical remission. The aims of this study were two-fold: (i) to evaluate the frequency and duration of spontaneous remission (defined according to the parameters issued by the International Diabetic Immunotherapy Group (IDIG)) in a European population of consecutive recent onset type I diabetes patients (aged 5-35 years), followed-up fur a period of 36 months with a common protocol of intensive insulin therapy and without adjunct immune-intervention; and (ii) to identify the predictive factors for clinical remission. Research design and method: A total of 189 consecutive patients with newly diagnosed type 1 diabetes according to ADA criteria were recruited in participating centres (Belgium, Czech Republic, Estonia, France, Germany, Hungary, Italy, Poland, Romania, Sweden and Turkey) and followed-up for a period of up to 36 months. In all patients, intensive insulin therapy was implemented consisting of three or four injections of regular insulin daily with NPH insulin at bedtime. Adjustment of insulin dose was made according to a common protocol. Various clinical characteristics (age, gender, severity of presentation, etc.), history (presence of diabetic siblings in the family, etc.) and integrated parameters of metabolic control (HbA(1c), blood glucose, the total insulin dose at hospital discharge adjusted for body weight) were collected. Results: Twenty-two patients (11.6%) experienced remission. The median duration of remission was 9.6 months and the range was 31 months. There was a wide variation among centres. Logistic regression analysis focused on the centre as the main variable in achieving remission. Conclusion: Remission was shown to be very heterogeneous between centres depending on 'other factors' such as patient care and family awareness of the disease rather than on 'measurable factors' such as sex, age, HbA(1c) and severity of presentation at diagnosis. Using intensive insulin therapy and optimisation of metabolic control, remission occurred in nearly one out of eight patients. (c) 2004 Elsevier Ireland Ltd. All rights reserved

    Supplementary Material for: Short Stature in a Boy with Multiple Early-Onset Autoimmune Conditions due to a STAT3 Activating Mutation: Could Intracellular Growth Hormone Signalling Be Compromised?

    No full text
    <i>Background:</i> Germline <i>STAT3</i> gain-of-function (GOF) mutations cause multiple endocrine and haematologic autoimmune disorders, lymphoproliferation, and growth impairment. As the JAK-STAT pathway is known to transduce the growth hormone (GH) signalling, and STAT3 interacts with STAT5 in growth regulation, we hypothesised that short stature in <i>STAT3</i> GOF mutations results mostly from GH insensitivity via involving activation of STAT5. <i>Case Report:</i> A boy with a novel <i>STAT3</i> c.2144C>T (p.Pro715Leu) mutation presented with short stature (–2.60 SD at 5.5 years). He developed diabetes mellitus at 11 months, generalised lympho­proliferation, autoimmune thyroid disease, and immune bicytopenia in the subsequent years. At 5.5 years, his insulin-like growth factor-1 (IGF-I) was 37 µg/L (–2.22 SD) but stimulated GH was 27.7 µg/L. Both a standard IGF-I generation test (GH 0.033 mg/kg/day sc; 4 days) and a high-dose prolonged IGF-I generation test (GH 0.067 mg/kg/day sc; 14 days) failed to significantly increase IGF-I levels (37–46 and 72–87 µg/L, respectively). The boy underwent haematopoietic stem cell transplantation at 6 years due to severe neutropenia and massive lymphoproliferation, but unfortunately deceased 42 days after transplantation from reactivated generalised adenoviral infection. <i>Conclusions:</i> Our findings confirm the effect of <i>STAT3</i> GOF mutation on the downstream activation of STAT5 resulting in partial GH insensitivity

    Supplementary Material for: Short Stature in a Boy with Multiple Early-Onset Autoimmune Conditions due to a STAT3 Activating Mutation: Could Intracellular Growth Hormone Signalling Be Compromised?

    No full text
    <i>Background:</i> Germline <i>STAT3</i> gain-of-function (GOF) mutations cause multiple endocrine and haematologic autoimmune disorders, lymphoproliferation, and growth impairment. As the JAK-STAT pathway is known to transduce the growth hormone (GH) signalling, and STAT3 interacts with STAT5 in growth regulation, we hypothesised that short stature in <i>STAT3</i> GOF mutations results mostly from GH insensitivity via involving activation of STAT5. <i>Case Report:</i> A boy with a novel <i>STAT3</i> c.2144C>T (p.Pro715Leu) mutation presented with short stature (–2.60 SD at 5.5 years). He developed diabetes mellitus at 11 months, generalised lympho­proliferation, autoimmune thyroid disease, and immune bicytopenia in the subsequent years. At 5.5 years, his insulin-like growth factor-1 (IGF-I) was 37 µg/L (–2.22 SD) but stimulated GH was 27.7 µg/L. Both a standard IGF-I generation test (GH 0.033 mg/kg/day sc; 4 days) and a high-dose prolonged IGF-I generation test (GH 0.067 mg/kg/day sc; 14 days) failed to significantly increase IGF-I levels (37–46 and 72–87 µg/L, respectively). The boy underwent haematopoietic stem cell transplantation at 6 years due to severe neutropenia and massive lymphoproliferation, but unfortunately deceased 42 days after transplantation from reactivated generalised adenoviral infection. <i>Conclusions:</i> Our findings confirm the effect of <i>STAT3</i> GOF mutation on the downstream activation of STAT5 resulting in partial GH insensitivity
    corecore